Sains Malaysiana 44(1)(2015): 83–89

 

The Persistence of Deltamethrin in Malaysian Agricultural Soils

(Kekekalan Deltametrin dalam Tanah Pertanian Malaysia)

 

 

B.S. ISMAIL*, M. MAZLINDA & M.A. TAYEB

 

School of Environmental and Natural Resource Sciences, Faculty of Science and Technology

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 24 September 2013/Diterima: 24 Jun 2014

 

ABSTRACT

Studies on the persistence and dissipation of deltamethrin (C22H19Br2NO3) in two types of soil, namely peat and silty clay were conducted under laboratory conditions. The analysis was done using a gas chromatography (GC) equipped with an electron capture detector (ECD). The dissipation rate of deltamethrin was faster in silty clay soil than in peat soil at 25°C. When the temperature was increased from 25 to 35°C, the half-life of deltamethrin decreased by 32.53% in peat soil and 22.9% in the silty clay soil in the presence of light. When the same experiment was conducted in the dark, the decrease in the half-life of deltamethrin was 27.9% in peat soil and 22.5% in silty clay soil. When the soil moisture content was increased from 40 to 60%, the half-life of deltamethrin decreased by 50.7 and 19.75% in peat soil and silty clay soil, respectively. A significant degradation rate of deltamethrin was observed in non-autoclaved soil compared with that in autoclaved soil where the half-life was reduced by 76.05% in peat soil and 59.21% in silty clay soil. The results showed that the degradation rate of deltamethrin in soil had a direct relationship with the microbial activity in the soil.

 

Keywords: Deltamethrin; half-life; microbial activity; persistence; soils

 

ABSTRAK

Kajian ke atas kekekalan dan kadar resapan deltametrin (C22H19Br2NO3) dalam dua jenis tanah (tanah gambut dan tanah liat berkelodak) telah dijalankan dalam keadaan makmal. Analisis ini dilakukan dengan menggunakan gas kromatografi (GC) dilengkapi dengan elektron pengesan tangkapan (ECD). Kadar resapan deltametrin adalah lebih tinggi dalam tanah liat berkelodak daripada tanah gambut pada 25°C. Apabila suhu meningkat antara 25 hingga 35°C, separuh hayat deltametrin menurun sebanyak 32.53% di dalam tanah gambut dan 22.9% dalam tanah liat berkelodak dengan kehadiran cahaya. Apabila kajian yang sama dijalankan dalam keadaan gelap, penurunan separuh hayat deltametrin adalah lebih tinggi dengan 27.9% di dalam tanah gambut dan 22.5% dalam tanah liat berkelodak. Apabila kelembapan tanah meningkat daripada 40 kepada 60%, separuh hayat deltametrin masing-masing menurun kepada 50.7 dan 19.75% dalam tanah gambut dan dalam tanah liat berkelodak. Kadar penurunan deltametrin yang ketara diperhatikan di dalam tanah bukan autoklaf berbanding tanah autoklaf dengan separuh hayat telah dikurangkan kepada 76.05% di dalam tanah gambut dan 59.21% dalam tanah liat berkelodak. Hasil kajian menunjukkan bahawa kadar penguraian deltametrin dalam tanah mempunyai hubungan yang kukuh dengan aktiviti mikrob di dalam tanah.

 

Kata kunci: Aktiviti mikrob; deltametrin; kekekalan; separuh hayat; tanah

RUJUKAN

Ardley, J.H. 1999. Pesticide considerations on environmental concern. Agricultural Sciences 12(2): 21-24.

Balmer, M.E., Goss, K.U. & Schwarzenbach, R.P. 2000. Photolytic transformation of organic pollutants on soil surfaces - experimental approach. Environmental Science Technology 34: 1240-1246.

Bao, S.D. 2000. Soil and Agricultural Chemistry Analysis. Bejing: China Agriculture Press.

Bhanu, S., Archana, S., Ajay, K., Bhatt, J.L., Bajpai, S.P., Singh, P.S. & Vandana, B. 2011. Impact of deltamethrin on environment, use as an insecticide and its bacterial degradation: A preliminary study. International Journal Environment Sciences 1(5): 977-985.

Bruun Hansen, H.C. 2002. Sorption of lambda cyhalothrin, deltamethrin and fenvalerate to quartz, corundum, kaolinite and montmorillonite [J]. Chemosphere 49(10): 1285-1294.

Chapman, R.A., Tu, C.M., Harris, C.S. & Cole, C. 1981. Persistence of five pyrethroid insecticides in sterile and natural mineral and organic soil. Bulletin of Environmental Contamination and Toxicology 26: 513-519.

Cavoski, I., Caboni, P., Sarais, G., Cabras, P. & Miano, T. 2007. Photodegradation of rotenone in soils under environmental conditions. Journal of Agricultural and Food Chemistry 55: 7069-7074.

Dungan, R.S., Gan, J. & Yates, S.R. 2003. Accelerated degradation of methyl isothiocyanate in soil. Water, Air and Soil Pollution 142: 299-310.

Fan, X.Z., Lu, B. & Gonj, A.J. 2005. Dynamics of solar light photodegradation behaviour of atrazine on soil surface. Journal of Hazardous Materials 117: 75-79.

Felsot, A. & Dahm, P.A. 1979. Sorption of organophosphorus and carbamate insecticides by soil. Journal of Agricultural and Food Chemistry 27(3): 557-563.

Ferrel, J.A. & Vencill, W.K. 2003. Flumioxazin soil persistence and mineralisation in laboratory experiments. Journal of Agricultural and Food Chemistry 51(16): 4719-4721.

Freed, V.H. & Chiou, C.T. 1979. Degradation of selected organophosphate pesticides in soil and water. Journal of Agricultural and Food Chemistry 27: 706-708.

Graebing, P. & Chib, J.S. 2004. Soil photolysis in a moisture and temperature controlled environment 2 Insecticides. Journal of Agricultural and Food Chemistry 52: 2606-2614.

Hill, I.R. 1985. Pyrethroid residues in soil and aquatic environments. Pesticide Science 16: 192-215.

Huntsman-mapila, P. 2002. Fate of deltamethrin. In Environmental Monitoring of Tsetse Aerial Spraying, edited by Perkins, J.S. & Ramberg, L. Botswana: Ministry of Agriculture.

Ismail, B.S. & Dan-Lin, O. 2003. Effects of temperature and moisture on the persistence of terbuthylazine in two Malaysia agricultural soils. Plant Protection Quarterly 18(2): 48-51.

Ismail, B.S. & Kalithasan, K. 1997. Effects of repeated application on persistence and downward movement of four herbicides in soil. Australian Journal of Soil Research 35: 503-513.

Khan, S.U., Bekhi, R.M., Tapping, R.I. & Akhbar, M.H. 1988. Deltamethrin residues in an organic soil under laboratory conditions and its degradation by bacterial strain. Journal of Agricultural and Food Chemistry 36: 636-638.

Konstantinou, I.K., Zarkadis, A.K. & Albanis, T.A. 2001. Photodegradation of selected herbicides in various natural waters and soils under environmental conditions. Journal of Environmental Quality 30: 121-130.

Lawskowski, D.A. 2002. Physical and chemical properties of pyrethroid. Reviews of Environmental Contamination and Toxicology 174: 49.

Lee, P.W. 1985. Fate of fenvalerate (Pydrin insecticide) in the soil environment. Journal of Agricultural and Food Chemistry 33: 993-998.

Liu, P., Liu, Y., Liu, Q. & Liu J. 2010. Photodegradation mechanism of deltamethrin and fenvalerate. Journal of Environmental Sciences 22(7): 1123-1128.

Ma, Y., Xu, C., Chen, S., Wen, Y. & Liu, W. 2005. Enantioselective degradation of 2, 4, 2-dichlorprop methyl ester by sediment bacteria. Journal of Environmental Science 26(4): 152-155.

Miyamoto, J. & Mikami, N. 1983. Degradation of pyrethroid insecticides in the field. In Pesticide Chemistry: Human Welfare and the Environment, edited by Takahashi, N., Yoshioka, H. & Misato, T. New York: Pergamon Press. pp. 193-200.

Okhawa, H., Nambu, K., Inui, H. & Miyamoto, J. 1978. Metabolic fate of fenvalerate microorganisms. Pesticide Science 129: 329-330.

Racke, K.D. 2001. Environmental Fate of Chloropyrifos. Rev. of Environ. Contam. Toxicol. New York: Springer-Verlag.

Roberts, T. & Hutson, D. 1999. Metabolic Pathways of Agrochemicals. Part 2: Insecticides and Fungicides. 1st ed. Cambridge, UK: The Royal Society of Chemistry. pp. 638-644.

Rouchaud, J., Thirion, A., Wauters, A., Van de Steene, F., Benoit, F., Ceustermans, N., Gillet, J., Marchand, S. & Vanparys, L. 1996. Effects of fertilizer on insecticides adsorption and biodegradation in crop soils. Archives of Environmental Contamination and Toxicology 31: 98-106.

Sing, B.K., Walker, A. & Wright, D.J. 2002. Persistence of chloropyriphos, fenamiphos, chlorothelonil and pendimethalin in soil and their effects on soil microbial characteristics. Bulletin of Environmental Contamination and Toxicology 69: 181-188.

Skidmore, M.W. 1994. Influence of application methods on the degradation of permethrin in laboratory, soil aerobic metabolism studies. Pesticide Science 42: 101-107.

Smith, S., Willis, G.H. & Cooper, C.M. 1995. Cyfluthrin persistence in soil as affected by moisture, organic matter and redox potential. Journal of Agricultural and Food Chemistry 29: 1122-1125.

Tomlin, C.D.S. 2006. The Pesticide Manual: A World Compendium. 14th ed. Farnham, UK: British Crop Protection Council. pp. 286-287.

Vieria, S.S. 2008. Effects of pesticides used in soya bean crops to the egg parasitoidtrichogrammapretiosum. Ciência Rural, Santa Maria 389(6): 1495-1503.

Walker, A., Moon, Y.H. & Welch, S.J. 1992. Influence of temperature, soil moisture and soil characteristics on the persistence of alachlor. Pesticide Science 35: 109-116.

Wang, X.D., Zhou, S.M., Wang, H.L. & Fan, D.F. 2005. Biodegradation of imazapyr in typical soils in Zhejiang Province, China. Journal of Environmental Science (China) 17(4): 593-597.

WHO. 1990. Environmental Health Criteria-97. Deltamethrin: International Programmes on Chemical Safety. WHO: Geneva, Switzerland. pp.1-33.

Xuang, X., Le, L.S. & Nakatsu, C. 2000. Impact of animal waste lagoon effluents on chloropyriphos degradation in soils. Environmental Toxicology and Chemistry 19: 2864-2870.

Yanez, L., Ortiz-Perez, D., Barts Le Borja-Aburto, V.H. & Diaz- Brriga, F. 2002. Levels of dichlorodiphenyltrichloroethane and deltamethrin in humans and environmental samples in malaria’s areas of Mexico. Environmental Research, Section A 88: 174.

 

 

*Pengarang untuk surat-menyurat; email: ismail@ukm.edu.my

 

 

sebelumnya