Sains Malaysiana 46(9)(2017): 1573–1579


Seaweed Tea: Fucoidan-Rich Functional Food Product Development from Malaysian Brown Seaweed, Sargassum binderi

(Teh Rumpai Laut: Pembangunan Produk Makanan Berfungsi Berasaskan Fukoidan daripada Rumpai Laut Perang Malaysia, Sargassum binderi)




School of Chemical Sciences and Food Technology, Faculty of Science and Technology

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia


Diserahkan: 10 November 2016/Diterima: 9 Februari 2017



Our previous studies on fucoidan from Malaysian brown seaweed, Sargassum binderi, found that it exhibited significant secondary anti-oxidative activity and showed non-toxicity. In order to exploit its health benefits, fucoidan-rich seaweed tea was developed in this study. A total of 4 different brewing time treatments were performed on Sargassum binderi at 5, 10, 15 and 20 mins (Ft05, Ft10, Ft15 and Ft20, respectively). It was found that Ft20 showed significantly (p<0.05) highest fucoidan content (27.22 ± 0.07 mg/200 mL), superoxide anion scavenging activity (16.46 ± 2.83%) and hydroxyl radical scavenging activity (89.83 ± 4.11%) compared to that of Ft05, Ft10 and Ft15. Both the secondary antioxidant activities were significantly positive correlated to the fucoidan content tests (superoxide anion scavenging activity at r=0.97, p=0.0052; and hydroxyl radical scavenging activity at r=0.99, p=0.0011). Masking of the seaweed odour was performed using lemon essence and discriminative test found that masking was most effective using lemon essence at a concentration of 0.3% (v/v). Therefore, there is potential for this seaweed tea to be commercialised, thus, consumers may acquire the health benefit of fucoidan.


Keywords: Fucoidan; functional food; Sargassum binderi; seaweeds; tea



Kajian terdahulu kami terhadap fukoidan yang diekstrak daripada rumpai laut perang Malaysia, Sargassum binderi, menunjukkan bahawa fukoidan ini mengandungi aktiviti antipengoksidaan sekunder yang bererti dan merupakan produk tidak toksik. Dalam usaha mengeksploitasi manfaat kesihatan fukoidan, teh rumpai laut telah dibangunkan dalam kajian ini. Sebanyak 4 perlakuan masa pendidihan pada Sargassum binderi pada sela masa 5, 10, 15 dan 20 min (masing-masing Ft05, Ft10, Ft15 dan Ft20) digunakan. Didapati bahawa Ft20 menunujukkan kandungan fukoidan (27.22 ± 0.07 mg/200 mL), aktiviti pemerangkapan superoksida anion (16.46 ± 2.83 %) dan aktiviti pemerangkapan radikal hidroksil (89.83 ± 4.11%) tertinggi secara bererti (p<0.05) berbanding Ft05, Ft10 dan Ft15. Kedua-dua aktiviti antipengoksidaan sekunder menunjukkan korelasi yang bererti dengan kandungan fukoidan (aktiviti pemerangkapan superoksida anion pada r=0.97, p=0.0052; dan aktiviti pemerangkapan radikal hidroksil pada r=0.99, p=0.0011). Penopengan bau rumpai laut telah dijalankan menggunakan pati lemon dan ujian diskriminatif telah menunjukkan bahawa penopengan yang paling berkesan adalah penggunaan pati lemon pada kepekatan 0.3% (v/v). Oleh itu, produk teh rumpai laut ini mempunyai potensi untuk dikomersialkan, supaya pengguna dapat menikmati manfaat kesihatan fukoidan.


Kata kunci: Fukoidan; makanan berfungsi; rumpai laut; Sargassum binderi; the


Ale, M.T., Mikkelsen, J.D. & Meyer, A.S. 2011. Important determinants for fucoidan bioactivity: A critical review of structure-function relations and extraction methods for fucose-containing sulfated polysaccharides from brown seaweeds. Marine Drugs 9: 2106-2130.

Aminah, A. 2004. Prinsip Penilaian Sensori. Bangi: Penerbit Universiti Kebangsaan Malaysia.

Aruoma, O.I. 1998. Free radicals, oxidative stress, and antioxidants in human health and disease. Journal of the American Oil Chemists’ Society 75(2): 199-212.

Chen, C.H., Pearson, A.M. & Gray, J.I. 1992. Effects of synthetic antioxidants (BHA, BHT and PG) on the mutagenicity of IQ-like compounds. Food Chemistry 3: 177-183.

FAO. 2016. FAO Yearbook 2014: Fishery and Aquaculture Statistics. Rome: Food and Agriculture Organization of the United Nations.

Gupta, S. & Abu-Ghannam, N. 2011. Recent developments in the application of seaweed or seaweed extracts as a means for enhancing the safety and quality attributes of foods. Innovative Food Science and Emerging Technologies 12: 600-609.

Haas, P. 1935. The liberation of methyl sulphide by seaweed. Biochemical Journal 29(6): 1297-1299.

Hellebust, J.A. & Craigie, J.S. 1978. Physiological & Biochemical Methods: Handbook of Phycological Methods. London: Cambridge University Press.

Izzreen, N.Q. & Ratnam, V. 2011. Volatile compound extraction using solid phase micro extraction coupled with gas chromatography mass spectrometry (SPME-GCMS) in local seaweeds of Kappaphycus alvarezii, Caulerpa lentillifera and Sargassum polycystem. International Food Research Journal 18(4): 1449-1456.

Li, B., Lu, F., Wei, X. & Zhao, R. 2008. Fucoidan: Structure and bioactivity. Molecules 13: 1671-1695.

Lim, S.J., Wan Aida, W.M., Maskat, M.Y., Latip, J., Badri, K.H. & Hassan, O. 2016. Chemical properties and toxicology studies of fucoidan extracted from Malaysian Sargassum binderi. Food Science and Biotechnology 25(S1): 23-29.

Lim, S.J., Wan Aida, W.M., Maskat, M.Y., Latip, J., Badri, K.H., Hassan, O. & Yamin, B.M. 2016. Characterisation of fucoidan extracted from Malaysian Sargassum binderi. Food Chemistry 209: 267-273.

Lim, S.J., Wan Aida, W.M., Maskat, M.Y., Mamot, S., Ropien, J. & Mazita Mohd, D. 2014. Isolation and antioxidant capacity of fucoidan from selected Malaysian seaweeds. Food Hydrocolloids 42: 280-288.

Marklund, S. & Marklund, G. 1974. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry 47: 469-474.

Prabhasankar, P., Ganesan, P., Bhaskar, N., Hirose, A., Stephen, N., Gowda, L.R., Hosokawa, M. & Miyashita, K. 2009. Edible Japanese seaweed, wakame (Undaria pinnatifida) as an ingredient in pasta: Chemical, functional and structural evaluation. Food Chemistry 115: 501-508.

Sarikurkcu, C., Tepe, B., Semiz, D.K. & Solak, M.H. 2010. Evaluation of metal concentration and antioxidant activity of three edible mushrooms from Mugla, Turkey. Food and Chemical Toxicology 48: 1230-1233.

Seo, Y.S., Bae, H.N., Eom, S.H., Lim, K.S., Yun, I.H., Chung, Y.H., Jeon, J.M., Kim, H.W., Lee, M.S., Lee, Y.B. & Kim, Y.M. 2012. Removal of off-flavors from sea tangle (Laminaria japonica) extract by fermentation with Aspergillus oryzae. Bioresource Technology 121: 475-479.

Sohi, H., Sultana, Y. & Khar, R.K. 2004. Taste masking technologies in oral pharmaceuticals: Recent developments and approaches. Drug Development and Industrial Pharmacy 30(5): 429-448.

Wang, J., Zhang, Q., Zhang, Z., Song, H. & Li, P. 2010. Potential antioxidant and anticoagulant capacity of low molecular weight fucoidan fractions extracted from Laminaria japonica. International Journal of Biological Macromolecules 46: 6-12.

Wijesinghe, W.A.J.P. & Jeon, Y.J. 2012. Biological activities and potential industrial applications of fucose rich sulfated polysaccharides and fucoidans isolated from brown seaweeds: A review. Carbohydrate Polymers 88: 13-20.

Wu, H.Y., Lim, S.J., Wan Aida, W.M., Maskat, M.Y. & Said, M. 2014. Characterisation and stability of pigments extracted from Sargassum binderi obtained from Semporna, Sabah. Sains Malaysiana 43(9): 1345-1354.

Yangthong, M., Towatana, N.H. & Phromkunthong, W. 2009. Antioxidant activities of four edible seaweeds from the Southern Coast of Thailand. Plant Foods for Human Nutrition 64: 218-223.

Zhu, K., Zhou, H. & Qian, H. 2006. Antioxidant and free radical-scavenging activities of wheat germ protein hydrolysates (WGPH) prepared with alcalase. Process Biochemistry 41: 1296-1302.



*Pengarang untuk surat-menyurat; email: