Sains Malaysiana 47(6)(2018): 1199–1208

http://dx.doi.org/10.17576/jsm-2018-4706-15

 

Synthesis and Binding Behaviour of New Isomers of Bis-Thiourea

(Perilaku Sintesis dan Pengikatan Isomer-Isomer Baharu Bis-Tiourea)

 

IMRAN FAKHAR, BOHARI MUHAMMAD YAMIN, SAHILAH ABDUL MUTALIB

& SITI AISHAH HASBULLAH*

 

School of Chemical Sciences and Food Technology, Faculty of Science and Technology

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 25 September 2017/Diterima: 22 Januari 2018

 

 

ABSTRACT

The two new symmetrical bis-thiourea compounds, 2,2'-[{(terephthaloylbis(azanediyl)bis (carbonothioyl)bis(azanediyl)} bis(4-methylpentanoicacid)] 1A and 2,2'-[{(isophthaloylbis (azanediyl)bis(carbonothioyl)bis(azanediyl)}bis(4- methylpentanoic acid)] 1B have been synthesized by reacting terephthaloyl/isophthaloyl chloride and L-leucine in high yields. Newly synthesized bis-thiourea derivatives were characterized using FTIR, 1D NMR, 2D NMR, MS spectrometry and Elemental analysis. Their binding properties with various cations were also carried out using UV-vis titration experiments. Both isomers exhibited effective binding against Ag+, Cu2+, Ni2+, Hg2+, Pb2+, Fe2+, and Fe3+ in the presence of other cations, such as Na+, Co2+, Cd2+, Zn2+, Mn2+, Mg2+, Ca2+, Sn2+, and Al3+. Stoichiometries of the host-guest complexation for both isomers were found to be 1:4 by plotting molar-ratio curves. Pearson Product moment correlation coefficient was in the range of 0.83-0.99 and nonlinear regression equation was used to calculate dissociation constant (Kd). Both compounds displayed weak antibacterial activities against gram-positive and gram negative bacteria. Cytotoxicity testing on CCD841 Normal human colon epithelial cell line showed that both compounds are non-toxic, with an IC50 value of 1.50 mg/mL.

 

Keywords: Bis-thiourea; binding studies; host-guest complexation; L-leucine

 

ABSTRAK

Dua sebatian baru bis-tiourea bersimetri, 2,2'- [{(tereptaloilbis (azanedil) bis (karbonotiol) bis (azanedil)} bis (4-metilpentanoik asid)] 1A dan 2,2' - [{(isoptaloibis (azanedil) bis (karbonotiol) bis (azanedil)} bis (4-metilpentanoik asid)] 1B telah disintesis melalui tindak balas antara tereptaloil/isoptaloil klorida dan L-leusin dengan peratusan hasil yang tinggi. Terbitan baru bis-tiourea ini dicirikan menggunakan FTIR, 1D NMR, 2D NMR, spektrometri SJ dan analisis jisim; unsur. Kedua-dua isomer menunjukkan pengikatan yang berkesan terhadap kation Ag+, Cu2+, Ni2+, Hg2+, Pb2+, Fe2+ dan Fe3+ dengan kehadiran kation Na+, Co2+, Cd2+, Zn2+, Mn2+, Mg2+, Ca2+, Sn2+ dan Al3+. Kompleks perumah-tetamu bagi kedua-dua isomer menunjukkan stoikiometri 1:4 yang dicerap melalui lengkung nisbah molar. Nilai pekali korelasi hasil Pearson berada dalam julat 0.83-0.99 dan persamaan regresi tak linear digunakan untuk mengira pemalar pengikatan (Kd). Kedua-dua sebatian ini menunjukkan aktiviti anti-bakteria yang lemah terhadap bakteria gram positif dan gram negatif. Ujian kesitoksikan terhadap sel epitelium manusia, CCD841 menunjukkan bahawa kedua-dua sebatian tersebut tidak toksik, dengan nilai IC50, 1.50 mg/mL.

 

Kata kunci: Bis-tiourea; kajian pengikatan; kompleks perumah-teteamu; L-leusin

RUJUKAN

 

Abosadiya, H.M. & Yamin, B.M. 2007. Synthesis and molecular structure of the complexes of trimethyl and tributyltin chloride with 3-(3-benzoylthi- ouredo)propionic acid. Journal of Sains MIPA 13(2): 73-76.

Abosadiyaa, H.M., Anouar, E.H., Hasbullah, S.A. & Yamin, B.M. 2015. Synthesis, X-ray, NMR, FT–IR, UV/Vis, DFT and TD–DFT studies of N-(4-chlorobutanoyl)-N′-(2-, 3- and 4-methylphenyl)thiourea derivatives. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 14: 115-124.

Al-Masoudi, N.A., Al-Haidery, N., Faili, N.T. & Pannecouque, C. 2010. Amino acid derivatives. Part 5. Synthesis and anti-HIV activity of new sebacoyl precursor derived thioureido-amino acid and phthalimide derivatives. Arkivoc. IX: 185-195.

Alvarez, M.D.LA., Zarelli, V.E.P., Pappano, N.B. & Debatista, N.B. 2004. Bacteriostatic action of synthetic polyhydroxylated chalcones against Escherichia coli. Biocell. 28: 31-34.

Arslan, H., Florke, U., Kϋlcϋ, N. & Binzet, G. 2007. The molecular structure and vibrational spectra of 2-chloro-N- (diethylcarbamothioyl)benzamide by Hartree–Fock and density functional methods. Spectrochimica Acta Part A 68: 1347-1355.

Bazzicalupi, C., Bencini, A., Berni, E., Bianchi, A., Fornasari, P., Giorgi, C. & Valtancoli, B. 2003. ZnII complex with a phenanthroline-containing macrocycle as receptor for amino acids and dipeptides - hydrolysis of an activated peptide bond. European Journal of Inorganic Chemistry 10: 1974-1983.

Breccia, P., Gool, M.V., Fernandez, R.P., M-Santamaria, S., Gago, F., Prados, P. & De. Mendoza, J. 2003. Guanidinium receptors as enantioselective amino acid membrane carriers. Journal of American Chemical Society 125(27): 8270-8284.

Carcu, V., Negoiu, M., Rosu, T. & Serban, S. 2000. Synthesis, characterization of complexes of N-benzoyl-n'-2-nitro-4- methoxyphenyl-thiourea with Cu, Ni, Pt, Pd, Cd and Hg. Journal of Thermal Analysis and Calorimetry 61(3): 936-945.

Claridge, S., Raeppel, F., Granger, M.C. Bernstein, N., Saavedra, O., Zhan, L., Llewellyn, D., Wahhab, A., Deziel, R., Rahil, J., Beaulieu, N., Nguyen, H., Dupont, I., Barsalou, A., Beaulieu, C., Chute, I., Gravel, S., Robert, M-F., Lefebvre, S., Dubay, M., Pascal, R., Gillespie, J., Jin, Z., Wang, J., Besterman, J.M., MacLeod, A.R. & Vaisburg, A. 2008. Discovery of a novel and potent series of thieno[3,2-b]pyridine-based inhibitors of c-Met and VEGFR2 tyrosine kinases. Bioorganic Medicinal Chemistry Letters 18(19): 2793-2798.

Dey, K.R., Wong, B.M. & Hossain, M.A. 2010. Rational design of a macrocycle-based chemosensor for anions. Tetrahedron Letters 51: 1329-1332.

Estevez-Hernández, O., Hidalgo-Hidalgo, J.L., Reguera, E. & Naranjo-Rodríguez, I. 2007. On the complex formation of CdCl2 with 1-furoylthioureas: Preconcentration and voltammetric behavior of Cd(II) at carbon paste electrodes modified with 3-monosubstituted and 3,3-disubstituted derivatives. Sensors and Actuators B 120: 766-772.

Fakhar, I., Yamin, B.M. & Hasbullah, S.A. 2017. A comparative study of the metal binding behavior of alanine based bis-thiourea isomers. Chemistry Central Journal 11: 76.

Fernández, E., Manzano, J.L., Benito, J.J., Hermosa, R., Monte, E. & Criado, J.J. 2005. Thiourea, triazole and thiadiazine compounds and their metal complexes as antifungal agents. Journal of Inorganic Biochemistry 99(8): 1558-1572.

Gasparrini, F., Misiti, D., Pierini, M. & Villani, C. 2002. A chiral A2B2 macrocyclic minireceptor with extreme enantioselectivity. Organic Letters 4(23): 3993-3996.

Hayashida, O., Sebo, L. & Rebek, J. 2002. Molecular discrimination of N-protected amino acid esters by a self-assembled cylindrical capsule: Spectroscopic and computational studies. Journal of Organic Chemistry 67(24): 8291-8298.

Higashi, N., Koga, T. & Niwa. M. 2002. Enantioselective binding and stable encapsulation of a-amino acids in a helical poly(L-glutamic acid)-shelled dendrimer in aqueous solutions. Chem Bio Chem. 3(5): 448-454.

Hua, J.H., Wang, L.C., Liu, H. & Wei, T.B. 2006. Biological activities studies and phase transfer catalysts promoting the one-pot synthesis of N-Aryl-N′-(4-Ethyloxy Benzoyl)- thiourea derivatives. Phosphorus, Sulfur, and Silicon and the Related Elements 181(12): 2691-2698.

Imrich, J., Bušová, T., Kristian, P. & Džara, J. 1994. Synthesis and the 13 C NMR Spectra of N, N-Disubstituted benzoylthioureas and their seleno and oxo analogues. Chemistry Papers 48(1): 42-46.

Jamil, M., Zubair, M., Farid, M.A., Rashid, U., Rasool, N. & Islam, S. 2013. Antibacterial, cytotoxicity studies and characterization of some newly synthesized symmetrical N3,N3’-Bis (disubstitued)isophathalyl-bis(thioureas) and their Cu(II) and Ni (II) complexes. Journal of Chemistry 2013: Article ID. 789743.

Jamil, M., Zubair, M., Rasool, N., Altaf, A.A., Rizwan, K., Hafeez, S., Bukhari, I.H. & Langer, P. 2013. Synthesis, characterization, antibacterial and urease inhibition studies of some novel symmetrical N3, N3’-bis-(disubstituted) isophthalyl-bis-(thioureas). Asian Journal of Chemistry 25(10): 5328-5332.

Jumal, J., Yamin, B.M., Ahmad, M. & Heng, L.Y. 2012. Mercury ion-selective electrode with self-plasticizing poly(n–buthylacrylate) membrane based on 1, 2-Bis-(N’– benzoylthioureido) cyclohexane as ionophore. APCBEE Procedia 3: 116-123.

Katz, A. & Davis, M.E. 1999. Investigations into the mechanisms of molecular recognition with imprinted polymers. Macromolecules 32(12): 4113-4121.

Ke, S.Y. & Xue, S.J. 2006. Synthesis and herbidical activity of N(O)thioureas derivatives and related fused heterocyclic compounds. Arkivoc. 10: 63-68.

Khansari, M.E., Wallace, K.D. & Hossain, M.A. 2014. Synthesis and anion recognition studies of a dipodal thiourea-based sensor for anions. Tetrahedron Letters 55: 438-440.

Koch, K.R. 2001. New chemistry with old ligands: N-alkyl-and N, N-dialkyl-N′-acyl (aroyl) thioureas in co-ordination, analytical and process chemistry of the platinum group metals. Coordination Chemistry Reviews 473: 216-217.

Koenig, K.E., Lein, G.M., Stückler, P., Kaneda, T. & Cram, D.J. 1979. Host-guest complexation. 16. Synthesis and cation binding characteristics of macrocyclic polyethers containing convergent methoxyaryl groups. Journal of American Chemical Society 101(13): 3553-3556.

Konishi, K., Yahara, K., Toshishige, H., Aida, T. & Inoue, S. 1994. A novel anion-binding chiral receptor based on a metalloporphyrin with molecular asymmetry. Highly enantioselective recognition of amino acid derivatives. Journal of American Chemical Society 116: 1337-1344.

Larry, G.R., Charles, W.S. & Barth, R. 1981. Minimum inhibitory and bactericidal concentrations of 44 antimicrobial agents against three standard control strain in broth with and without human serum. Antimicrobial Agents & Chemotherapy 19: 1050-1055.

Lubert, K.H., Guttmann, M. & Beyer, L. 2002. Electrode reactions of palladium(II) in chloride solution at carbon paste electrodes modified with derivatives of N-benzoylthiourea. Journal of Solid State Electrochemistry 6: 545-552.

Manjula, S.N., Malleshappa Noolvi, N., Vipan Parihar, K., Manohara Reddy, S.A., Ramani, V., Gadad, A.K., Singh, G., Gopalan Kutty, N. & Mallikarjuna Rao, C. 2009. Synthesis and antitumor activity of optically active thiourea and their 2-aminobenzothiazole derivatives: A novel class of anticancer agents. European Journal of Medicinal Chemistry 44(7): 2923-2929.

Nencki, M. 1873. Zur kenntniss des sulfoharnstoffs. Berichte der Deutschen Chemischen Gesellschaft 6(1): 598-600.

Nishizawa, S., Bühlmann, P., Xiao, K.P. & Umezawa, Y. 1998. Application of a bis-thiourea ionophore for an anion selective electrode with a remarkable sulfate selectivity. Analytica Chimica Acta 358: 35-44.

Otazo, E., Pérez, L., Estévez, O., Rojas, S. & Alonso, J. 2001. Aroylthioureas: New organic ionophores for heavy-metal ion selective electrodes. Journal of the Chemical Society, Perkin Transactions 2 11: 2211-2218.

Péréz-Marín, L., Otazo-Sanchez, E., Macedo-Miranda, G., Avila-Perez, P., Chamaro, J.A. & Lopez-Valvida, H. 2000. Mercury(II) ion-selective electrode: Study of 1,3-diphenylthiourea as ionophore. Analyst 125: 1787-1790.

Peng, H., Liang, Y., Chen, L., Fu, L., Wang, H. & He, H. 2011. Efficient synthesis and biological evaluation of 1, 3-benzenedicarbonyl dithioureas. Bioorganic and Medicinal Chemistry Letters 21(4): 1102-1104.

Phetsuksiri, B., Jackson, M., Scherman, H., McNeil, M., Besra, G.S., Baulard, A.R., Slayden, R.A., DeBarber, A.E., Barry, C.E., Baird, M.S., Crick, D.C. & Brennan, P.J. 2003. Unique mechanism of action of the thiourea drug isoxyl on Mycobacterium tuberculosis. Journal of Biological Chemistry 278(52): 53123-53130.

Qing, G., Sun, T., Chen, Z., Yang, X., Wu, X. & He, Y. 2009. Naked-eye enantioselective chemosensors for N-protected amino acid anions bearing thiourea units. Chirality 21: 363-373.

Qing, G.Y., He, Y.B., Wang, F., Qin, H.J., Hu, C.G. & Yang, X. 2007. Enantioselective fluorescent sensors for chiral carboxylates based on calix [4] arenes bearing an L-tryptophan unit. European Journal of Organic Chemistry 11: 1768-1778.

Ranise, A., Spallarossa, A., Bruno, O., Schenone, S., Fossa, P., Menozzi, G., Bondavalli, F., Mosti, L., Capuano, A., Mazzeo, F., Falcone, G. & Filippelli, W. 2003. Synthesis of N-substituted-N-acylthioureas of 4-substituted piperazines endowed with local anaesthetic, antihyperlipidemic, antiproliferative activities and antiarrythmic, analgesic, antiaggregating actions. II Farmaco 58(9): 765-780.

Ranise, A., Bondavalli, F., Bruno, O., Schenone, S., Donnoli, D., Parrillo, C., Cenicola, M.L. & Rossi, F. 1991. 1-Acyl-, 3-acyl- and 1,3-diacyl-3-furfuryl-1-phenylthioureas with platelet antiaggregating and other activities. Farmaco 46(10): 1203-1216.

Rekharsky, M., Yamamura, H., Kawai, M. & Inoue, Y. 2001. Critical difference in chiral recognition of N-Cbz-d/l-aspartic and -glutamic acids by Mono- and Bis(Trimethylammonio)- β-cyclodextrins. Journal of American Chemical Society 123: 5360-5361.

Roslan, R., Yusof, M.S.M. & Zin, W.M.K.W.M. 2009. Synthesis and characterization studies of novel thiourea amino acid derivatives. Prosiding Seminar Kimia Bersama UKM-ITB VIII, Universiti Kebangsaan Malaysia, Bangi, 9-11 Jun.

Saeed, A., Khurshid, A., Jasinski, J.P., Pozzi, C.G., Fantoni, A.C. & Erben, M.F. 2014. Competing intramolecular NAH O@C hydrogen bonds and extended intermolecular network in 1-(4-chlorobenzoyl)-3-(2-methyl-4- oxopentan-2-yl) thiourea analyzed by experimental and theoretical methods. Chemical Physics 43: 39-46.

Sharma, S.K., Wu, Y., Steinbergs, N., Crowley, M.L., Hanson, A.S., Casero, R.A. & Woster, P.M. 2010. (Bis)urea and (Bis)thiourea inhibitors of lysine-specific demethylase 1 as epigenetic modulators. Journal of Medicinal Chemistry 53(14): 5197-5212.

Singh, A.K., Jain, A.K. & Mehtab, S. 2007. Ytterbium-selective polymeric membrane electrode based on substituted urea and thiourea as a suitable carrier. Analytica Chimica Acta 597(2): 322-330.

Sun, C., Zhang, X., Huang, H. & Zhou, P. 2006. Synthesis and evaluation of a new series of substituted acyl(thio)urea and thiadiazolo [2,3-a] pyrimidine derivatives as potent inhibitors of influenza virus neuraminidase. Bioorganic and Medicinal Chemistry 14(24): 8574-8581.

Sun, J., Cai, S., Mei, H., Yan, N., Wang, Q., Lin, Z. & Huo, D. 2010. Molecular docking and QSAR studies on substituted Acyl(thio)urea and thiadiazolo [2,3-a] pyrimidine derivatives as potent inhibitors of influenza virus neuraminidase. Chemical Biology and Drug Design 76(3): 245-254.

Tadjarodi, A., Adhami, F., Hanifehpour, Y., Yazdi, M., Moghaddamfard, M. & Kickelbick, G. 2007. Structural characterization of a copper(II) complex containing oxidative cyclization of N-2-(4-picolyl)-N’-(4-methoxyphenyl) thiourea, new ligands of 4-picolylthiourea derivatives and the precursor molecular structure of oxidative cyclization of N-(2-pyridyl)-N’-(4- methoxyphenyl)thiourea. Polyhedron 26: 4609-4618.

Vig, R., Mao, C., Venkatachalam, T.K., Tuel-Ahlgren, L., Sudbeck, E.A. & Uckun, F.M. 1998. Rational design and synthesis of phenethyl-5-bromopyridyl thiourea derivatives as potent non-nucleoside inhibitors of HIV reverse transcriptase. Bioorganic Medicinal Chemistry 6(10): 1789-1797.

Wang, F.H., Qin, Z.L. & Huang, Q. 2006. Synthesis and fungicidal activity of 1,3,4-Oxadiazole substituted acylthioureas. Frontiers of Chemistry in China 1: 112-114.

Xiao, K.P., Bühlmann, P., Nishizawa, S., Amemiya, S. & Umezawa, Y. 1997. An ion-selective electrode for acetate based on a urea-functionalized porphyrin as a hydrogen-bonding ionophore. Analytical Chemistry 69: 1038-1044.

Xiao, L., Liu, C.J. & Li, Y.P. 2004. Ultrasound promoted synthesis of bis (substituted pyrazol-4-ylcarbonyl)-substituted thioureas. Molecules 14(4): 1423-1428.

Yakovenko, A.V., Boyko, V.I., Kalchenko, V.I., Baldini, L., Casmati, A., Sansone, F. & Ungaro, R. 2007. N-Linked-peptidocalix[4]arene as enantioselective receptors for amino acid derivatives. Journal of Organic Chemistry 72: 3223-3231.

Yanping, R., Junfeng, B., Liufang, W., Jigui, W. & Chungu, X. 1999. Synthesis, characterization and scavenger effects on O2-radicals of some transition metal complexes with N-[(Benzoylamino)Thioxomethyl]Glycine. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry 29(7): 1171-1182.

Yoshikawa, N., Yamada, Y.M.A., Das, J., Sasai, H. & Shibasaki, M. 1999. Direct catalytic asymmetric aldol reaction. Journal of American Chemical Society 121(17): 4168-4178.

Zhong, Z., Xing, R., Liu, S., Wang, L., Cai, S. & Li, P. 2008. Synthesis of acyl thiourea derivatives of chitosan and their antimicrobial activities in vitro. Carbohydrate Research 343(3): 566-570.

Zirihi, G., Mambu, L., Guédé-Guina, F., Bodo, B. & Grellier, P.J. 2005. In vitro antiplasmodial activity and cytotoxicity of 33 West African plants used for treatment of malaria. Etnopharmacol. 98: 281-285.

Zullkiplee, W.S.H.W., Halim, A.N.A., Ngaini, Z., Ariff, M.A.M. & Hussain, H. 2014. Bis-Thiourea bearing aryl and amino acids side chains and their antibacterial activities. Phosphorus, Sulfur, Silicon Related Elements 189(6): 832-838.

 

 

*Pengarang untuk surat-menyurat; email: aishah80@ukm.edu.my

 

 

 

 

 

sebelumnya