Sains Malaysiana 49(2)(2020): 323-333


Physicochemical and Thermal Characterization of Hydroxyethyl Cellulose - Wheat Starch Based Films Incorporated Thymol Intended for Active Packaging

(Fizikokimia dan Pencirian Haba Hidroksietil Selulosa - Kanji Gandum berasaskan Filem Gabungan Timol Bertujuan untuk Pembungkusan Aktif)




1Department of Basic Science and Engineering, Faculty of Agriculture and Food Sciences, Universiti Putra Malaysia Bintulu Sarawak Campus, P.O. Box 396, Nyabau Road, 97008 Bintulu, Sarawak, Malaysia


2Department of Bioprocess and Polymer Engineering, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor Darul Takzim, Malaysia


3School of Engineering, Swinburne University of Technology Sarawak Campus, 93350 Kuching, Sarawak, Malaysia


Diserahkan: 8 April 2019/Diterima: 10 November 2019



Biodegradable packing materials with antimicrobial properties have been a concern for years because of its positive environmental implications. The present work aimed to develop the formulation of hydroxyethyl cellulose (HEC)/wheat-starch based film in which the active compound, thymol (0.5, 1, 1.5, 2, and 2.5% w/w) were incorporated into the polymeric material.  Solution casting method was used for the film preparation while thymol was incorporated prior to casting. The physical and chemical properties of the developed film were determined. SEM was found to have a smooth and homogeneous with a small amount of thymol which grows coarser with 1.5% or higher thymol content. FTIR was used to find the chemical property of the film and suggested that the carbonyl functional group was unchanged in the film, however, -OH groups increased substantially with increased amount of thymol. Thermal properties were profiled through thermogravimetric analysis and differential scanning calorimeter where the AM film containing 1.5% (w/v) of thymol shows the highest thermal stability and decomposes less in comparison to other samples. The inhibitory capability of the film was tested against a list of microbial contamination and was found to successfully inhibit the growth of selected gram positive and gram negative bacteria in a wide range of studied concentration. The mechanical properties of the films were improved by 60.3% with an optimum tensile strength at thymol concentration of 1.5% w/w.  It can be concluded that the film properties are retained chemically whereas mechanical properties, strength, flexibility and function of the film are being enhanced remarkably by the incorporation of thymol.


Keywords: Active packaging; hydroxyethyl cellulose; thymol; wheat based film



Bahan pembungkusan biodegradasi dengan sifat antimikrob telah menjadi kebimbangan selama ini kerana implikasinya terhadap alam sekitar. Kertas ini bertujuan untuk membangunkan formulasi hidroksietil selulosa (HEC)/kanji-gandum berasaskan filem dengan sebatian aktif timol (0.5, 1, 1.5, 2 dan 2.5% w/w) digabungkan ke dalam bahan polimer. Kaedah larutan tuangan telah digunakan untuk penyediaan filem manakala timol telah digabungkan sebelum tuangan. Sifat fizikal dan kimia filem yang dibangunkan telah ditentukan. SEM yang diperoleh adalah licin dan homogen dengan sedikit timol telah menjadi kasar dengan 1.5% atau lebih tinggi kandungan timol. FTIR telah digunakan untuk mencari sifat kimia filem dan mencadangkan bahawa kumpulan fungsian karbonil tidak berubah dalam filem, walau bagaimanapun, kumpulan -OH meningkat dengan ketara dengan peningkatan jumlah timol. Sifat terma telah diprofil melalui analisis termogravimetri dan pengimbasan pembezaan kalorimeter dengan filem AM yang mengandungi 1.5% (w/v) timol menunjukkan kestabilan haba tertinggi dan reput yang kurang berbanding sampel lain. Keupayaan rencatan filem telah diuji terhadap satu senarai pencemaran mikrob dan didapati berjaya merencat pertumbuhan bakteria gram positif dan gram negatif terpilih dalam pelbagai kepekatan. Sifat mekanik filem ini telah bertambah baik sebanyak 60.3% dengan kekuatan tegangan optimum pada 1.5% w/w kepekatan timol. Boleh disimpulkan bahawa sifat kimia filem dikekalkan manakala sifat mekanik, kekuatan, kefleksibelan dan fungsi filem telah ditingkatkan dengan begitu baik dengan  gabungan timol.


Kata kunci: Gandum berasaskan filem; hidroksietil selulosa; pembungkusan aktif; timol



Abreu, A.S., Oliveira, M., de Sá, A., Rodrigues, R.M., Cerqueira, M.A., Vicente, A.A. & Machado, A.V. 2015. Antimicrobial nanostructured starch based films for packaging. Carbohydrate Polymers 129: 127-134.

Appendini, P. & Hotchkiss, J.H. 2001. Surface modification of poly(styrene) by the attachment of an antimicrobial peptide. Journal of Applied Polymer Science 81(3): 609-616.

Arras, G. & Usai, M. 2001. Fungitoxic activity of 12 essential oils against four postharvest citrus pathogens: Chemical analysis of thymus capitatus oil and its effect in subatmospheric pressure conditions. Journal of Food Protection 64(7): 1025-1029.

Avella, M., De Vlieger, J.J., Errico, M.E., Fischer, S., Vacca, P. & Volpe, M.G. 2005. Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chemistry 93(3): 467-474.

Ayala-Zavala, J.F., González-Aguilar, G.A. & Del-Toro-Sánchez, L. 2009. Enhancing safety and aroma appealing of fresh-cut fruits and vegetables using the antimicrobial and aromatic power of essential oils. Journal of Food Science 74(7): R84-R91.

Brody, A.L., Strupinsky, E.P. & Kline, L.R. 2001. Active Packaging for Food Applications. Boca Raton: CRC Press.

Bulpa, P., Dive, A. & Sibille, Y. 2007. Invasive pulmonary aspergillosis in patients with chronic obstructive pulmonary disease. European Respiratory Journal 30(4): 782-800.

Cao, X., Chang, P.R. & Huneault, M.A. 2008. Preparation and properties of plasticized starch modified with poly(ε-caprolactone) based waterborne polyurethane. Carbohydrate Polymers 71(1): 119-125.

Cerqueira, M.A., Costa, M.J., Fuciños, C., Pastrana, L.M. & Vicente, A.A. 2014. Development of active and nanotechnology-based smart edible packaging systems: Physical-chemical characterization. Food and Bioprocess Technology 7(5): 1472-1482.

Chen, J.G., Liu, C.H., Chen, Y.Q., Chen, Y. & Chang, P.R. 2008. Structural characterization and properties of starch/konjac glucomannan blend films. Carbohydrate Polymers 74(4): 946-952.

Dawson, P.L., Acton, J.C., Han, I.Y., Padgett, T., Orr, R. & Larsen, T. 1996. Incorporation of antibacterial compounds into edible and biodegradable packaging films. Research and Development Associates for Military Food and Packaging Systems 48(1): 203-210.

Delgado, B., Fernández, P.S., Palop, A. & Periago, P.M. 2004. Effect of thymol and cymene on Bacillus cereus vegetative cells evaluated through the use of frequency distributions. Food Microbiology 21(3): 327-334.

Ettayebi, K., Jamal El, Y. & Badr-Din, R-H. 2000. Synergistic effects of nisin and thymol on antimicrobial activities in Listeria monocytogenes and Bacillus subtilis. FEMS Microbiology Letters 183(1): 191-195.

Famá, L., Flores, S.K., Gerschenson, L. & Goyanes, S. 2006. Physical characterization of cassava starch biofilms with special reference to dynamic mechanical properties at low temperatures. Carbohydrate Polymers 66(1): 8-15.

García, M.A., Pinotti, A., Martino, M.N. & Zaritzky, N.E. 2009. Characterization of starch and composite edible films and coatings. Edible Films and Coatings for Food Applications. New York: Springer-Verlag. pp. 169-209.

Gennadios, A., Weller, C. & Testin, R.F. 1993. Temperature effect on oxygen permeability of edible protein-based films. Journal of Food Science 58(1): 212-214.

Gibis, D. & Rieblinger, K. 2011. Oxygen scavenging films for food application. Procedia Food Science 1: 229-234.

Gniewosz, M. & Synowiec, A. 2011. Antibacterial activity of pullulan films containing thymol. Flavour and Fragrance Journal 26(6): 389-395.

Han, J.H. 2003. Antimicrobial food packaging. Novel Food Packaging Techniques 8: 50-70.

Han, J.J. 2006. Antimicrobial packaging system for optimization of electron beam irradiation of fresh produce. Thesis PhD. Texas A&M University (Unpublished).

Hasnah Sirat Mohd, Zakaria Bahari, Muhammad Sum Hj. Idris. & Farediah Ahmed. 2000. Kimia Organik. Edisi Modu. Johor Bahru.

Helander, I.M., Alakomi, H.L., Latva-Kala, K., Mattila-Sandholm, T., Pol, I., Smid, E.J., Gorris, L.G.M. & von Wright, A. 1998. Characterization of the action of selected essential oil components on gram-negative bacteria. Journal of Agricultural and Food Chemistry 46(9): 3590-3595.

Karbowiak, T., Debeaufort, F., Champion, D. & Voilley, A. 2006. Wetting properties at the surface of iota-carrageenan-based edible films. Journal of Colloid and Interface Science 294(2): 400-410.

Kittinaovarat, S. & Kantuptim, P. 2005. Comparative antibacterial properties of glyoxal and glyoxal and chitosan treated cotton fabrics. AATCC Review 5(4): 22-24.

Kroll, J. & Rawel, H.M. 2001. Reactions of plant phenols with myoglobin: Influence of chemical structure of the phenolic compounds. Journal of Food Science 66(1): 48-58.

Kuorwel, K.K. 2011. Incorporation of natural antimicrobial agents into starch-based material for food packaging. PhD thesis, Victoria University (Unpublished).

Li, K-K., Yin, S-W., Yang, X-Q., Tang, C-H. & Wei, Z-H. 2012. Fabrication and characterization of novel antimicrobial films derived from thymol-loaded zein-sodium caseinate (SC) nanoparticles. Journal of Agricultural and Food Chemistry 60(46): 11592-11600.

Liu, Z. & Han, J.H. 2005. Film‐forming characteristics of starches. Journal of Food Science 70(1): E31-E36.

Malhotra, B., Keshwani, A. & Kharkwal, Harsha. 2015. Antimicrobial food packaging: Potential and pitfalls. Frontiers in Microbiology 6: 611.

Mali, S., Grossmann, M.V.E., García, M.A., Martino, M.N. & Zaritzky, N.E. 2006. Effects of controlled storage on thermal, mechanical and barrier properties of plasticized films from different starch sources. Journal of Food Engineering 75(4): 453-460.

Marcos, B., Aymerich, T., Monfort, J.M. & Garriga, M. 2010. Physical performance of biodegradable films intended for antimicrobial food packaging. Journal of Food Science 75(8): E502-E507.

Matias, V.R.F. & Beveridge, T.J. 2005. Cryo‐electron microscopy reveals native polymeric cell wall structure in Bacillus subtilis 168 and the existence of a periplasmic space. Molecular Microbiology 56: 240-251.

Mistry, Y. 2006. Development of LDPE-based antimicrobial films for food packaging. Master Theses. Packaging and Polymer Research Unit, School of Molecular Sciences, Faculty of Health, Engineering and Science, Victoria University (Unpublished).

Moreno, O., Atarés, L. & Chiralt, A. 2015. Effect of the incorporation of antimicrobial/antioxidant proteins on the properties of potato starch films. Carbohydrate Polymers 133: 353-364.

Nazzaro, F., Fratianni, F., De Martino, L., Coppola, R. & De Feo, V. 2013. Effect of essential oils on pathogenic bacteria. Pharmaceuticals 6(12): 1451-1474.

Nozieana Khairuddin, Ida Idayu Muhamad, Wan Aizan Wan Abdul Rahman. & Bazlul Mobin Siddique. 2019. Microbial study of pH sensitive starch based film using agar diffusion method (zone inhibition assay). IOP Conf. Ser.: Materials Science and Engineering 607: 1-6.

Numpaque, M.A., Oviedo, L.A., Gil, J.H., García, C.M. & Durango, D.L. 2011. Thymol and carvacrol: Biotransformation and antifungal activity against the plant pathogenic fungi colletotrichum acutatum and botryodiplodia theobromae. Tropical Plant Pathology 36(1): 3-13.

Quijada-Garrido, I., Iglesias-González, V., Mazon-Arechederra, J.M. & Barrales-Rienda. J.M. 2007. The role played by the interactions of small molecules with chitosan and their transition temperatures. Glass-forming liquids: 1, 2, 3-Propantriol (Glycerol). Carbohydrate Polymers 68(1): 173-186.

Ramos, M., Jiménez, A., Peltzer, M. & Garrigós, M.C. 2014. Development of novel nano-biocomposite antioxidant films based on poly (lactic acid) and thymol for active packaging. Food Chemistry 162: 149-155.

Ramos, M., Jiménez, A., Peltzer, M. & Garrigós, M.C. 2012. Characterization and antimicrobial activity studies of polypropylene films with carvacrol and thymol for active packaging. Journal of Food Engineering 109(3): 513-519.

Rodríguez, M., Oses, J., Ziani Khalid. & Mate, J.I. 2006. Combined effect of plasticizers and surfactants on the physical properties of starch based edible films. Food Research International 39(8): 840-846.

Salarbashi, D., Tajik, S., Ghasemlou, M., Shojaee-Aliabadi, S., Shahidi Noghabi, M. & Khaksar, R. 2013. Characterization of soluble soybean polysaccharide film incorporated essential oil intended for food packaging. Carbohydrate Polymers 98(1): 1127-1136.

Salleh Eraricar, Ida Idayu Muhammad. & Qadly Ameen Pahlawi. 2014. Spectrum activity and lauric acid release behaviour of antimicrobial starch-based film. Procedia Chemistry 9: 11-22.

Sánchez-González, L., Vargas, M., González-Martínez, C., Chiralt, A. & Cháferl, M. 2009. Characterization of edible films based on hydroxypropylmethylcellulose and tea tree essential oil. Food Hydrocolloids 23(8): 2102-2109.

Šegvić Klarić, M., Kosalec, I., Mastelić, J., Pieckova, E. & Pepeljnak, S. 2007. Antifungal activity of thyme (Thymus vulgaris L.) essential oil and thymol against moulds from damp dwellings. Letters in Applied Microbiology 44(1): 36-42.

Shojaee-Aliabadi, S., Hosseini, H., Mohammadifar, M.A., Mohammadi, A., Ghasemlou, M., Hosseini, S.M. & Khaksar, R. 2014. Characterization of κ-carrageenan films incorporated plant essential oils with improved antimicrobial activity. Carbohydrate Polymers 101: 582-591.

Sikkema, J., de Bont, J.A. & Poolman, B. 1995. Mechanisms of membrane toxicity of hydrocarbons. Microbiol. Mol. Biol. Rev. 59(2): 201-222.

Soares, R.M.D., Lima, A.M.F., Oliveira, R.V.B., Pires, A.T.N. & Soldi, V. 2005. Thermal degradation of biodegradable edible films based on xanthan and starches from different sources. Polymer Degradation and Stability 90(3): 449-454.

Tippayatum, P. & Chonhenchob, V. 2007. Antibacterial activities of thymol, eugenol and nisin against some food spoilage bacteria. Nat. Sci. 41: 319-323.

Tiwari, B.K., Valdramidis, V.P., O’Donnell, C.P., Kasiviswanathan Muthukumarappan, Bourke, P. & Cullen, P.J. 2009. Application of natural antimicrobials for food preservation. Journal of Agricultural and Food Chemistry 57(14): 5987-6000.

Torres, A., López de Dicastillo, C., Ríos, M., Bastias, I., Guarda, A. & Galotto, M.J. 2014. Effect of organoclay incorporation on thermal, physical and morphological properties of LLDPE nanocomposites for active food packaging applications. Journal of the Chilean Chemical Society 59(4): 2681-2685.

Trombetta, D., Castelli, F., Sarpietro, M.G., Venuti, V., Cristani, M., Daniele, C., Saija, A., Mazzanti, G. & Bisignano, G. 2005. Mechanisms of antibacterial action of three monoterpenes. Antimicrobial Agents and Chemotherapy 49(6): 2474-2478.

Weerakkody, N.S., Caffin, N., Turner, M.S. & Dykes, G.A. 2010. In vitro antimicrobial activity of less-utilized spice and herb extracts against selected food-borne bacteria. Food Control 21(10): 1408-1414.

Wu, Y., Qin, Y.Y., Yuan, M.L., Li, L., Chen, H.Y., Cao, J.X. & Yang, J.Y. 2014. Characterization of an antimicrobial poly (lactic acid) film prepared with poly (ε‐caprolactone) and thymol for active packaging. Polymers for Advanced Technologies 25(9): 948-954.

Xiong, H.G., Tang, S.W., Tang, H.L. & Zou, P. 2008. The structure and properties of a starch-based biodegradable film. Carbohydrate Polymers 71(2): 263-268.

Zhang, L.M., Li, R.C., Dong, F., Tian, A.Y., Li, Z.J. & Dai, Y.J. 2015. Physical, mechanical and antimicrobial properties of starch films incorporated with ε-poly-l-lysine. Food Chemistry 166: 107-114.

Zohuriaan, M.J. & Shokrolahi, F. 2004. Thermal studies on natural and modified gums. Polymer Testing 23(5): 575-579.


*Pengarang untuk surat-menyurat; email: