Malaysian Journal of Analytical Sciences Vol 22 No 3 (2018): 532 - 541

DOI: 10.17576/mjas-2018-2203-22

 

 

 

MONOETHANOLAMINE WASTEWATER TREATMENT VIA ADSORPTION USING WOOD SAWDUST BASED ACTIVATED CARBON

 

(Rawatan Air Sisa Monoetanolamina Melalui Kaedah Penjerapan Menggunakan Karbon Habuk Kayu Yang Diaktifkan)

 

Azry Borhan1*, Tong Yeong Yit1, Suzana Yusup1, Normawati Mohd Yunus2

 

1Department of Chemical Engineering

2Department of Fundamental and Applied Sciences

Universiti Teknologi Petronas, 32610 Bandar Seri Iskandar, Perak, Malaysia

 

*Corresponding author:  azrybo@utp.edu.my

 

 

Received: 16 April 2017; Accepted: 7 March 2018

 

 

Abstract

In this work, sawdust, which is low cost and produced abundantly from wood industry, was tested as a precursor for the production of porous carbons in a chemical scheme using H3PO4. From synthesis parameters studied, F21 activated carbon with the largest surface area, total pore volume and diameter was obtained when sawdust is impregnated with ratio of 1:1 and treated with activation temperature of 500 °C for a period of 60 minutes. Through nitrogen adsorption-desorption isotherm analysis, existence of mesopores was proven when a combination of Type-I and Type-II isotherms were exhibited by the activated carbon produced. The results from adsorption test showed that under the effect of initial concentration, the optimum sample is capable of removing 96.8% of MEA at low concentration of 100 ppm, while under the effect of stirring rate, 99.7% of MEA is removed at highest stirring rate at 400 rpm. Finally under the effect of contact time, 99.7% of MEA removal is achieved at time of 45 minutes. The obtained results show that agriculture waste product from sawdust can be effectively used as an adsorption material in MEA wastewater treatment.

 

Keywords:  wood sawdust, monoethanolamine, chemical activation, activated carbon, adsorption

 

Abstrak

Di dalam kajian ini, habuk papan, yang berkos rendah dan dihasilkan dengan banyak dari industri kayu, telah diuji sebagai pemula untuk pengeluaran karbon berliang dalam skim kimia menggunakan H3PO4. Dari parameter sintesis yang dikaji, F21 karbon yang diaktifkan menghasilkan luas permukaan, jumlah isi padu dan diameter berliang terbesar diperolehi apabila habuk papan diimpregnasikan dengan nisbah 1:1 dan dirawat dengan suhu pengaktifan 500 °C untuk tempoh 60 minit. Melalui analisis isoterma penjerapan nitrogen, kewujudan liang meso terbukti apabila gabungan isotem Jenis-I dan Jenis-II dipamerkan oleh karbon yang diaktifkan. Hasil daripada ujian penjerapan menunjukkan bahawa di bawah kesan kepekatan awal, sampel optimum mampu mengeluarkan 96.8% daripada monoetanolamina (MEA) pada kepekatan rendah 100 ppm, manakala di bawah kesan kadar kacau, 99.7% daripada MEA dikeluarkan pada kadar pengadukan tertinggi pada 400 rpm. Akhirnya di bawah kesan waktu hubungan, 99.7% penyingkiran MEA dicapai pada masa 45 minit. Hasil yang diperoleh menunjukkan bahawa produk sisa pertanian dari habuk papan boleh digunakan dengan berkesan sebagai bahan penjerap dalam rawatan air buangan MEA.

 

Kata kunci:  habuk papan kayu, monoetanolamin, pengaktifan kimia, karbon diaktifkan, penjerapan

 

References

1.       Luis, P. (2016). Use of monoethanolamine (MEA) for CO2 capture in a global scenario: Consequences and alternatives. Desalination, 380: 93-99.

2.       Zhang, Y., Chen, C. C., Plaza, J. M. and Rochelle, G. T. (2009). Rate-based process modelling study of CO2 capture with aqueous monoethanolamine solution. Industrial and Engineering Chemistry Research, 48(20): 9233-9246.

3.       Razali, M. N. (2011). Adsorption treatment of monoethanolamine wastewater from oil and gas industry. Master Thesis. Universiti Malaysia Pahang, Malaysia.

4.       Hospido, A., Moriera, M. T., Fernandez, C. M. and Feijoo, G. (2004). Environment performance of a municipal wastewater treatment plant: LCA case-studies. International Journal of Life Cycle Assessment, 10: 336-345.

5.       Borhan, A., Hoong, P. K. and Taha, M. F. (2014). Biosorption of heavy metal ions, oil and grease from industrial waste by banana peel. Journal of Applied Mechanics and Materials, 625: 749-752.

6.       Jahagindar, A. A., Ahmed, M. N. Z. and Devi, B. V. (2012). Adsorption of chromium on activated carbon prepared from coconut shell. International Journal of Engineering Research and Application, 2: 364-370.

7.       Malaysian Investment Development Authority (2016). Industries in Malaysia - Wood based industry. http://www.mida.gov.my/env3/index.php?page=wood-based-industry. [Access online 29 December 2016].

8.       Prakash, K. B. G., Shivakamy, K., Miranda, L. R. and Velan, M. (2006). Preparation of steam activated carbon from rubberwood sawdust and its adsorption kinetics. Journal of Hazardous Materials, 136(3): 922-929.

9.       Nur Izzati, A. G., Nur Yusra, M. Y., Wan Nor Roslam, W. I. and Mohd. S. M. (2017). Modification of active carbon from biomass Nypa and amine functional croups as carbon dioxide adsorbent. Journal of Physical Science, 28(1): 227-240.

10.    Razali, M. N., Yunus, R. M., Jemaat Z. and Alias S. (2010). Monoethanolamine wastewater treatment via adsorption: A study on comparison of chitosan, activated carbon, alum and zeolite. Journal of Applied Sciences, 10(21): 2544-2550.

11.    Mohammad, A. F. M., Yoshimitsu, U., Suzana, Y., Fathelrahman, E., Azhar, U. and Mitsuka, D. (2016). Activated carbon from rubber wood sawdust by CO2 activation. Procedia Engineering, 148: 530-537.

12.    Borhan, A., Taha, M. F. and Hamzah, A. A. (2014). Characterization of activated carbon from wood sawdust prepared via chemical activation using potassium hydroxide. Advanced Materials Research, 832: 132-137.

13.    Muda, A. and Hidayu, A. R. (2016). Preparation and characterization of impregnated activated carbon from palm kernel shell and coconut shell for CO2 capture. Procedia Engineering, 148: 106-113.

14.    Zhang, T., Walawender, W. P., Fan, F. T., Fan, M. and Brown, R. C. (2004). Preparation of activated carbon from forest and agricultural residues through CO2 activation. Chemical Engineering Journal, 105 (1-2): 53-59.

15.    Zhang, H., Yan, Y. and Yang. L. (2010). Preparation of activated carbon from sawdust by zinc chloride activation. Adsorption, 16(3): 161-166.

16.    Teng, H., Yeh, T. S. and Hsu, L.Y. (1998). Preparation of activated carbon from bituminous coal with phosphoric acid activation. Carbon, 36(9): 1387-1395.

17.    Borhan, A. and Kamil, A. F. (2014). Preparation and characterization of activated carbon from rubber-seed shell by chemical activation. Journal of Applied Sciences, 11: 1124-1129.

18.    Girgis, B. S. and El-Hendawy, A. A. (2002). Porosity development in activated carbons obtained from date pits under chemical activation with phosphoric acid. Microporous and Mesoporous Materials, 52 (2): 105-117.

19.    Mays, T. J. (2007). A new classification pore sizes. Studies in Surface Science Catalysis, 160: 57-62.

20.    Koumanova, B., Peeva, P. and Allen, J. S. (2003). Variation of intraparticle diffusion parameter during adsorption of p-chlorophenol onto activated carbon made from apricot stones. Journal of Chemical Technology and Biotechnology, 78: 582-587.

21.    Bulut, Y. and Tex, Z. (2007). Removal of heavy metals from aqueous solution by sawdust adsorption. Journal of Environmental Sciences, 19: 160-166.

22.    Gad, H. M. H. and El-Sayed, A. A. (2009). Activated carbon from agricultural by-products for the removal of Rhodamine-B from aqueous solution. Journal of Hazardous Materials, 168: 1070-1081.

 




Previous                    Content                    Next