Malaysian Journal of Analytical Sciences Vol 22 No 3 (2018): 542 - 552

DOI: 10.17576/mjas-2018-2203-23

 

 

 

Surface modification of Polyethersulfone membrane via UV-grafting for forward osmosis technology

 

(Modifikasi Permukaan Membran Polyetersulfon Melalui Cantuman-UV untuk Teknologi Osmosis ke Hadapan)

 

Ahmad Fikri Hadi Abdul Rahman* and Mazrul Nizam Abu Seman

 

Faculty of Chemical & Natural Resources Engineering,

Universiti Malaysia Pahang, 26300 Kuantan, Pahang, Malaysia

 

*Corresponding author:  fikrihadi@gmail.com

 

 

Received: 16 April 2017; Accepted: 7 March 2018

 

 

Abstract

In this study, UV-grafting was used in surface modification of polyethersulfone membrane (UFPES50) for forward osmosis (FO) application. Using two parameters, namely monomer concentration (acrylic acid) and grafting time, the modified membrane was characterised by attenuated total reflectance-Fourier transform infrared (ATR-FTIR), field emission scanning electron microscope (FESEM) and contact angle. The membrane was evaluated for its water permeability, solute permeability, and structural parameter. The water permeability increases as the grafting parameters increases; however, at the highest (50 g/L) of monomer concentration, a sudden drop occurred due to the thickening of the grafted layer. Focusing on this monomer concentration, the grafting time was increased up to 60 minutes and it was successfully demonstrated that the modification using UV-grafting on PES membrane involved both effective grafting and chain scission. In addition, negative rejection on the modified membrane was observed.

 

Keywords:  forward osmosis, effective grafting, negative retention, structural parameter

 

Abstrak

Di dalam kajian ini, kaedah  cantuman UV digunakan untuk mengubah membran polyetersulfon (UFPES50) untuk kegunaan aplikasi osmosis ke hadapan. Dua parameter digunakan iaitu kepekatan monomer (asid akrilik) dan masa cantuman.   Pencirian bagi membran yang telah dimodifikasi dilakukan  melalui spektroskopi transformasi infra merah Fourier- pantulan keseluruhan dikecilkan (ATR-FTIR), mikroskop imbasan elektron pancaran medan (FESEM) serta sudut sentuhan.  Membran telah di nilai dari segi ketelapan air, ketelapan bahan larut dan struktur parameter. Ketelapan air meningkat dengan pertambahan percambahan parameter, tetapi pada kepekatan monomer yang tinggi (50g/L), telah berlaku perubahan yang mendadak. Dengan memberi fokus kepada kepekatan ini, masa cantuman ditingkatkan sehingga 60 minit. Hasil kajian berjaya membuktikan bahawa proses cantuman meliputi cantuman berkesan dan pemotongan rantaian. Selain daripada itu,  di dapati terdapat penolakan negatif pada membran yang telah diubah suai.

 

Kata kunci:  osmosis ke hadapan, cantuman berkesan, penolakan negatif, struktur parameter

 

References

1.       Cath, T., Childress, A. and Elimelech, M. (2006). Forward osmosis: Principles, applications, and recent developments. Journal of Membrane Science, 281(1-2): 70-87.

2.       Kochkodan, V. and Hilal, N. (2015). A comprehensive review on surface modified polymer membranes for biofouling mitigation. Desalination, 356 (1): 187-207.

3.       Ng, L. T., Garnett, J. L., Zilic, E. and Nguyen, D. (2001). Effect of monomer structure on radiation grafting of charge transfer complexes to synthetic and naturally occurring polymers. Radiation Physics and Chemistry, 62(1): 89-98.

4.       Kim, S. M. (2013). Surface nanostructuring of polysulfone membranes by atmospheric pressure plasma-induced graft polymerization (APPIGP). Thesis of Master Degree, University of California, USA.

5.       Garcia-Ivars, J., Iborra-Clar, M. I., Alcaina-Miranda, M. I. Mendoza-Roca, J. A. and Pastor-Alcañiz, L. (2016). Surface photomodification of flat-sheet PES membranes with improved antifouling properties by varying UV irradiation time and additive solution pH. Chemical Engineering Journal, 283(1): 231-242.

6.       He, D., Susanto, H. and Ulbricht, M. (2009). Photo-irradiation for preparation, modification and stimulation of polymeric membranes. Progress in Polymer Science, 34(1): 62-98.

7.       Zhao, C., Nie, S., Tang, M. and Sun, S. (2011). Polymeric pH-sensitive membranes—A review. Progress in Polymer Science, 36(11): 1499-1520.

8.       Yin, J. and Deng, B. (2015). Polymer-matrix nanocomposite membranes for water treatment. Journal of Membrane Science, 479(1): 256-275.

9.       Abu Seman, M. N., Khayet, M., Ali, Z. I. and Hilal, N. (2010). Reduction of nanofiltration membrane fouling by UV-initiated graft polymerization technique. Journal of Membrane Science, 355(1): 133-141.

10.    Ng, L. Y., Ahmad, A. and Mohammad, A. W. (2013). Alteration of polyethersulphone membranes through UV-induced modification using various materials: A brief review. Arabian Journal of Chemistry, 10(2): 1821-1834.

11.    Garcia-Ivars, J., Iborra-Clar, M. I., Alcaina-Miranda, M. I., Mendoza-Roca, J. A. and Pastor-Alcañiz, L. (2014). Development of fouling-resistant polyethersulfone ultrafiltration membranes via surface UV photografting with polyethylene glycol/aluminum oxide nanoparticles. Separation and Purification Technology, 135(1): 88-99.

12.    Peeva, P. D., Pieper T. and Ulbricht, M. (2010). Tuning the ultrafiltration properties of anti-fouling thin-layer hydrogel polyethersulfone composite membranes by suited crosslinker monomers and photo-grafting conditions. Journal of Membrane Science, 362(1-2): 560-568.

13.    Setiawan, L., Wang, R., Tan, S., Shi, L. and Fane, A. G. (2013). Fabrication of poly(amide-imide)-polyethersulfone dual layer hollow fiber membranes applied in forward osmosis by combined polyelectrolyte cross-linking and depositions. Desalination, 312(1): 99-106.

14.    Chung, Y. T., Ng, L. Y. and Mohammad, A. W. (2014). Sulfonated-polysulfone membrane surface modification by employing methacrylic acid through UV-grafting: Optimization through response surface methodology approach. Journal of Industrial and Engineering Chemistry, 20(4): 1549-1557.

15.    Deng, B., Li, J., Hou, Z., Yao, S., Shi, L., Liang, G. and Sheng, K. (2008). Microfiltration membranes prepared from polyethersulfone powder grafted with acrylic acid by simultaneous irradiation and their pH dependence. Radiation Physics and Chemistry, 77(7): 898-906.

16.    Li, S. S., Xie, Y., Xiang, T., Ma, L., He, C., Sun, S. D. and Zhao, C. S. (2016). Heparin-mimicking polyethersulfone membranes – hemocompatibility, cytocompatibility, antifouling and antibacterial properties. Journal of Membrane Science, 498(1): 135-146.

17.    Zhao, C., Xue, J., Ran, F. and Sun, S. (2013). Modification of polyethersulfone membranes – A review of methods. Progress in Materials Science, 58(1): 76-150.

18.    Van der Bruggen, B. (2009). Chemical modification of polyethersulfone nanofiltration membranes: A review. Journal of Applied Polymer Science, 114(1): 630-642.

19.    Wang, D., Zou, W., Li, L., Wei, Q., Sun, S. and Zhao, C. (2011). Preparation and characterization of functional carboxylic polyethersulfone membrane. Journal of Membrane Science, 374(1): 93-101.

20.    Kato, K., Uchida, E., Kang, E. T., Uyama, Y. and Ikada, Y. (2003). Polymer surface with graft chains. Progress in Polymer Science, 28(2): 209-259.

21.    Wei, X., Wang, R., Li, Z. and Fane, A. G. (2006). Development of a novel electrophoresis-UV grafting technique to modify PES UF membranes used for NOM removal. Journal of Membrane Science, 273(1): 47-57.

22.    Bilongo, T. G., Remigy, J. C. and Clifton, M. (2010). Modification of hollow fibers by UV surface grafting. Journal of Membrane Science, 364(1): 304-308.

23.    Kuroda, S. I., Nagura, A., Horie, K. and Mita, I. (1989). Degradation of aromatic polymers—III. Crosslinking and chain scission during photodegradation of polysulphones. European Polymer Journal, 25(6): 621-627.

24.    Mansourpanah, Y. and Momeni Habili, E. (2013). Preparation and modification of thin film PA Membranes with improved antifouling property using acrylic acid and UV irradiation. Journal of Membrane Science, 342(1-2): 158-166.

25.    Yu, H., Cao, Y., Kang, G., Liu, J., Li, M. and Yuan, Q. (2009). Enhancing antifouling property of polysulfone ultrafiltration membrane by grafting zwitterionic copolymer via UV-initiated polymerization. Journal of Membrane Science, 342(1-2): 6-13.

26.    Taniguchi, M. and Belfort, G. (2004). Low protein fouling synthetic membranes by UV-assisted surface grafting modification: Varying monomer type. Journal of Membrane Science, 231(1-2): 147-157.

27.    Taniguchi, M., Pieracci, J., Samsonoff, W. A. and Belfort, G. (2003). UV-assisted graft polymerization of synthetic membranes:  Mechanistic studies. Chemistry of Materials, 15(20): 3805-3812.

28.    Liu, C., Shi, L. and Wang, R. (2015). Crosslinked layer-by-layer polyelectrolyte nanofiltration hollow fiber membrane for low-pressure water softening with the presence of SO42− in feed water. Journal of Membrane Science, 486(1): 169-176.

29.    Volkov, A., Yushkin, A., Kachula, Y., Khotimsky, V. and Volkov, V. (2014). Application of negative retention in organic solvent nanofiltration for solutes fractionation. Separation and Purification Technology, 124(1): 43-48.

30.    Vatanpour, V., Madaeni, S. S., Moradian, R., Zinadini, S. and Astinchap, B. (2011). Fabrication and characterization of novel antifouling nanofiltration membrane prepared from oxidized multiwalled carbon nanotube/polyethersulfone nanocomposite. Journal of Membrane Science, 375(1): 284-294.

31.    Schaep, J., Vandecasteele, C., Wahab Mohammad, A. and Richard Bowen, W. (2001). Modelling the retention of ionic components for different nanofiltration membranes. Separation and Purification Technology, 22(1): 169-179.

32.    Bhanushali, D., Kloos, S. and Bhattacharyya, D. (2002). Solute transport in solvent-resistant nanofiltration membranes for non-aqueous systems: Experimental results and the role of solute–solvent coupling. Journal of Membrane Science, 208(1): 343-359.

33.    Qiu, C., Zhang, Q. T. N. L. and Ping, Z. (2006). Nanofiltration membrane preparation by photomodification of cardo polyetherketone ultrafiltration membrane. Separation and Purification Technology, 51(3): 325-331.

34.    Nilsson, M., Trägårdh, G. and Östergren, K. (2008). The influence of pH, salt and temperature on nanofiltration performance. Journal of Membrane Science, 312(1): 97-106.

35.    Phillip, W. A., Yong, J. S. and Elimelech, M. (2010). Reverse draw solute permeation in forward osmosis: Modeling and experiments. Environmental Science and Technology, 44(13): 5170-5176.

36.    Elimelech, M., Chen, W. H. and Waypa, J. J. (1994). Measuring the zeta (electrokinetic) potential of reverse osmosis membranes by a streaming potential analyzer. Desalination, 95(3): 269-286.

37.    Achilli, A., Cath, T. Y. and Childress, A. E. (2010). Selection of inorganic-based draw solutions for forward osmosis applications. Journal of Membrane Science, 364(1): 233-241.

38.    Park, M., Lee, J. J., Lee, S. and Kim, J. H. (2011). Determination of a constant membrane structure parameter in forward osmosis processes. Journal of Membrane Science, 375 (1-2): 241-248.

39.    Tiraferri, A., Yip, N. Y., Straub, A. P., Romero-Vargas Castrillon, S. and Elimelech, M. (2013). A method for the simultaneous determination of transport and structural parameters of forward osmosis membranes. Journal of Membrane Science, 444(1): 523-538.




Previous                    Content                    Next