Sains Malaysiana 46(10)(2017): 1865–1875


Molecular Docking Studies of Selected Medicinal Drugs as Dengue Virus-2 Protease Inhibitors

(Kajian Mengedok Molekul Dadah Ubatan Terpilih sebagai Perencat Protease Virus-2 Denggi)




1Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia


2Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia


3Department of Biotechnology, Faculty of Science, Lincoln University College, 47301 Petaling Jaya, Selangor Darul Ehsan, Malaysia


4School of Engineering, Monash University Bandar Sunway, 46150 Bandar Sunway, Selangor Darul Ehsan, Malaysia


5Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia


6Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia


7Drug Design and Development Research Group (DDDRG), University of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia


Received: 28 July 2016/Accepted: 20 March 2017



Dengue is a potentially deadly disease with no effective drug. An in silico molecular docking was performed using Autodock 4.2.6 to investigate the molecular interactions between protease inhibitors, comprising antibiotic derivatives namely doxycycline (3), rolitetracycline (5) and a non-steroidal anti-inflammatory drug (NSAID), meclofenamic acid (4), against the NS2B-NS3 protease from dengue virus-2 (DENV-2). The non-competitive inhibitor (3) showed lower binding energy (-5.15 kcal/mol) than the predicted competitive inhibitors 4 and 5 (-3.64 and -3.21 kcal/mol, respectively). Structural analyses showed compound 3 that bound to a specific allosteric site, interacted with Lys74, a significant amino acid residue bonded to one of the catalytic triad, Asp75. Compounds 4 and 5 showed direct binding with two of the catalytic triad, His51 and Ser135, hence, predicted to be competitive inhibitors.


Keywords: Dengue virus-2; docking; inhibitors; NS2B-NS3 protease



Denggi adalah sejenis penyakit yang boleh membawa maut dan sehingga kini tiada sebarang ubat untuk merawat penyakit tersebut. Mengedok molekul secara in silico menggunakan Autodock 4.2.6 telah dijalankan untuk mengkaji interaksi molekul antara perencat protease yang terdiri daripada derivatif antibiotik iaitu doxycycline (3) dan rolitetracycline (5) dan dadah anti-radang bukan steroid (NSAID), asid meklofenamik (4), terhadap NS2B-NS3 daripada virus denggi-2 (DENV-2). Perencat tidak-kompetitif (3) menunjukkan tenaga ikatan yang lebih rendah (-5.15 kcal/mol) berbanding sebatian 4 dan 5 (masing-masing -3.64 dan -3.21 kcal/mol). Analisis struktur menunjukkan sebatian 3 yang terikat pada kawasan alosterik, berinteraksi dengan Lys74, iaitu residu asid amino yang terikat dengan salah satu daripada residu triad pemangkinan, Asp75. Sebatian 4 dan 5 pula menunjukkan ikatan langsung dengan dua triad pemangkinan iaitu His51 dan Ser135, justeru diramalkan sebagai perencat kompetitif.


Kata kunci: Mengedok; NS2B-NS3 protease; perencat; virus denggi-2


Amorim, J., Alves, R., Boscardin, S. & Ferreira, L. 2014. The dengue virus non-structural 1 protein: risks and benefits. Virus Research 181(53-60): 53-60.

Atilgan, E. & Hu, J. 2011. Improving protein docking using sustainable genetic algorithms. International Journal of Computer Information Systems and Industrial Management Applications 3: 248-255.

Atkovska, K., Samsonov, S.A., Paszkowski-Rogacz, M. & Pisabarro, M.T. 2014. Multipose binding in molecular docking. International Journal of Molecular Sciences 15(2): 2622-2645.

Bespamyatnikh, S., Edelsbrunner, V.C.H. & Rudolph, J. 2004. Accurate Protein Docking by Shape Complementarity Alone. Duke University, NC, USA.

Bhatt, S., Gething, P.W., Brady, O.J., Messina, J.P., Farlow, A.W., Moyes, C.L., Drake, J.M., Brownstein, J.S., Hoen, A.G., Sankoh, O., Myers, M.F., George, D.B., Jaenisch, T., Wint, G.R.W., Simmons, C.P., Scott, T.W., Farrar, J.F. & Hay, S.I. 2013. The global distribution and burden of dengue. Nature 496(7446): 504-507.

Byrd, C., Dai, D., Grosenbach, D., Berhanu, A., Jones, K., Cardwell, K., Schneider, C., Wineinger, K.A., Page, J.M., Harver, C., Stavale, E., Tyavanagimatt, S., Stone, M.A., Bartenschlager, R., Scaturro, P., Hruby, D.E. & Jordan, R. 2013. A novel inhibitor of dengue virus replication that targets the capsid protein. Antimicrobial Agents and Chemotheraphy 57(1): 15-25.

Chen, W.N., Loscha, K.V., Nitsche, C., Graham, B. & Otting, G. 2014. The dengue virus NS2B-NS3 protease retains the closed conformation in the complex with BPTI. FEBS Letters 588(14): 2206-2211.

Chiu, M., Shih, H., Yang, T. & Yang, Y. 2007. The type 2 dengue virus envelope protein interacts with small ubiquitin-like modifier-1 (SUMO-1) conjugating enzyme 9 (Ubc9). Journal of Biomedical Science 14(3): 429-444.

Datar, P.A. & Jadhav, S.R. 2015. Design and synthesis of Pyrazole-3-one derivatives as hypoglycaemic agents. International Journal of Medicinal Chemistry 2015: 670181.

Du, Q.S., Wang, Q.Y., Du, L.Q., Chen, D. & Huang, R.B. 2013. Theoretical study on the polar hydrogen-π (Hp-π) interactions between protein side chains. Chemistry Central Journal 7(1): 92.

Duax, W.L., Thomas, J., Pletnev, V., Addlagatta, A., Huether, R., Habegger, L. & Weeks, C.M. 2005. Determining structure and function of steroid dehydrogenase enzymes by sequence analysis, homology modeling, and rational mutational analysis. Annals of the New York Academy of Sciences 1061: 135-148.

Erbel, P., Schiering, N., D’Arcy, A., Renatus, M., Kroemer, M., Lim, S.P., Zheng Yin, Z., Keller, T.H., Vasudevan, S.G. & Hommel, U. 2006. Structural basis for the activation of flaviviral NS3 proteases from dengue and West Nile virus. Nature Structural & Molecular Biology 13(4): 372-372.

Falgout, B., Pethel, M., Zhang, Y.M. & Lai, C.J. 1991. Both nonstructural proteins NS2B and NS3 are required for the proteolytic processing of dengue virus nonstructural proteins. Journal of Virology 65(5): 2467-2475.

Frimayanti, N., Chee, C., Zain, S.M. & Rahman, N.A. 2011. Design of new competitive dengue NS2B/NS3 protease inhibitors - A computational approach. International Journal of Molecular Sciences 12(2): 1089-1100.

Fukunishi, Y. & Nakamura, H. 2011. Prediction of ligand-binding sites of proteins by molecular docking calculation for a random ligand library. Protein Science 20(1): 95-106.

Grinter, S.Z. & Zou, X. 2014. Challenges, applications, and recent advances of protein-ligand docking in structure-based drug design. Molecules 19(7): 10150-10176.

Halstead, S.B. 2005. More dengue, more questions. Emerging Infection Disease 11(5): 740-741.

Heh, C.H., Othman, R., Buckle, M.J.C., Sharifuddin, Y., Yusof, R. & Rahman, N.A. 2013. Rational discovery of dengue type 2 non-competitive inhibitors. Chemical Biology & Drug Design 82(1): 1-11.

Heilman, J.M., Wolff, J.D., Beards, G.M. & Basden, B.J. 2014. Dengue fever: A wikipedia clinical review. Open Medicine 8(4): 105-115.

Hetényi, C. & van der Spoel, D. 2006. Blind docking of drug-sized compounds to proteins with up to a thousand residues. FEBS Letters 580(5): 1447-1450.

Kadir, S.L.A., Yaakob, H. & Zulkifli, R.M. 2013. Potential anti-dengue medicinal plants: A review. Journal of Natural Medicine 67(4): 677-689.

Kaptein, S.J.F., Burghgraeve, T.D., Froeyen, M., Pastorino, B., Alen, M.M.F., Mondotte, J.A., Herdewijn, P., Jacobs, M., de Lamballerie, X., Schols, D., Gamarnik, A.V., Sztaricskai, F. & Neyts, J. 2010. A derivate of the antibiotic doxorubicin is a selective inhibitor of dengue and yellow fever virus replication in vitro. Antimicrobial Agents and Chemotheraphy 54(12): 5269-5280.

Kellenberger, E., Schalon, C. & Rognan, D. 2008. How to measure the similarity between protein ligand-binding sites? Current Computer-Aided Drug Design 4: 209-220.

Kiat, T.S., Pippen, R., Yusof, R., Ibrahim, H., Khalid, N. & Rahman, N.A. 2006. Inhibitory activity of cyclohexenyl chalcone derivatives and flavonoids of fingerroot, Boesenbergia rotunda (L.), towards dengue-2 virus NS3 protease. Bioorganic & Medicinal Chemistry Letters 16(12): 3337-3340.

Kumar, C.V.M.N., Taranath, V., Venkatamuni, A., Vardhan, R.V., Prasad, Y.S., Ravi, U. & Sai Gopal, D.V.R. 2015. Therapeutic potential of Carica papaya L. leaf extraction in treatment of dengue patients. International Journal of Applied Biology & Pharmaceutical 6(3): 93-98.

Kyle, J.L. & Harris, E. 2006. Global spread and persistence of dengue. Annual Review of Microbiology 62: 71-92.

Leung, D., Schroder, K., White, H., Fang, N.X., Stoermer, M.J., Abbenante, G., Martin. J.L., Young, P.R. & Fairlie, D.P. 2001. Activity of recombinant dengue 2 virus NS3 protease in the presence of a truncated NS2B Co-factor, small peptide substrates, and inhibitors. Journal of Biological Chemistry 276(49): 45762-45771.

Lifson, S., Hagler, A.T. & Dauber, P. 1979. Consistent force field studies of intermolecular forces in hydrogen-bonded crystals. 1. carboxylic acids, amides, and the C=O-H- hydrogen bonds. Journal of American Chemical Society 101(11): 5111-5121.

Low, J.S., Wu, K.X., Chen, K.C., Ng, M.M. & Chu, J.J. 2011. Narasin, a novel antiviral compound that blocks dengue virus protein expression. Antiviral Theraphy 16(12): 1203-1218.

Mustafa, M.S., Rasotgi, V., Jain, S. & Gupta, V. 2015. Discovery of fifth serotype of dengue virus (DENV-5): A new public health dilemma in dengue control. Armed Forces Medical Services 71(1): 67-70.

Normile, D. 2013. Surprising new dengue virus throws a spanner in disease control efforts. Science 342(6157): 415.

Ong, S.Q. 2016. Dengue vector control in Malaysia: A review for current and alternative strategies. Sains Malaysiana 45(5): 777-785.

Othman, R., Kiat, T.S., Khalid, N., Yusof, R., Newhouse, I., Newhouse, J.S., Alam, M. & Rahman, N.A. 2008. Docking of noncompetitive inhibitors into dengue virus type 2 protease: Understanding the interactions with allosteric binding sites. Journal of Chemical Infornation and Modelling 48(8): 1582-1591.

van Panhuis, W.G., Gibbons, R.V., Endy, T.P., Rothman, A.L., Srikiatkhachorn, A., Nisalak, A., Burke, D.S. & Cummings, D.A.T. 2010. Inferring the serotype associated with dengue virus infections on the basis of pre- and postinfection neutralizing antibody titers. Journal of Infectious Disease 202(7): 1002-1010.

Rothan, H.A., Bahrani, H., Mohamed, Z., Rahman, N.A. & Yusof, R. 2014a. Fusion of Protegrin-1 and Plectasin to MAP30 shows significant inhibition activity against dengue virus replication. PLoS ONE 9(4): e94561.

Rothan, H.A., Mohamed, Z., Paydar, M., Rahman, N.A. & Yusof, R. 2014b. Inhibitory effect of doxycycline against dengue virus replication in vitro. Archieves of Virology 159(2): 711-718.

Rothan, H.A., Buckle, M.J., Ammar, Y.A., Shatrah, P.M., Noorsaadah, A.R. & Rohana, Y. 2013. Study the antiviral activity of some derivatives of tetracycline and non-steroid anti-inflammatory drugs towards dengue virus. Tropical Biomedicine 30(6): 1-10.

Sukupolvi-Petty, S., Austin, S.K., Purtha, W.E., Oliphant, T., Nybakken, G.E., Schlesinger, J.J., Roehrig, J.T., Gromowski, G.D., Barrett, A.D., Fremont, D.H. & Diamond, M.S. 2007. Type- and subcomplex-specific neutralizing antibodies against domain III of dengue virus type 2 envelope protein recognize adjacent epitopes. Journal of Virology 81(23): 12816.

Sun, P. & Kochel, T.J. 2013. The battle between infection and host immune responses of dengue virus and its implication in dengue disease pathogenesis. The Scientific World Journal 2013: 843469.

Tomlinson, S.M., Malmstrom, R.D. & Watowich, S.J. 2009. New approaches to structure-based discovery of dengue protease inhibitors. Infectious Disorders-Drug Targets 9(3): 327-343.

Wan-Norafikah, O., Nazni, W.A., Noramiza, S., Shafa’ar- Ko’ohar, S., Heah, S.K., Nor-Azlina, A.H., Khairul-Asuad, M. & Lee, H.L. 2012. Distribution of Aedes mosquitoes in three selected localities in Malaysia. Sains Malaysiana 41(10): 1309-1313.

Wang, W.K., Sung, T.L., Lee, C.N., Lin, T.Y. & King, C.C. 2002. Sequence diversity of the capsid gene and the nonstructural gene NS2B of dengue-3 virus in vivo. Journal of Virology 303(1): 181-191.

Zhang, X.G., Mason, P.W., Dubovi, E.J., Xu, X., Bourne, N., Renshawc, R.W., Blocka, T.M. & Birka, A.V. 2009. Antiviral activity of geneticin against dengue virus. Antiviral Research 83(1): 21-27.



*Corresponding author; email: