Sains Malaysiana 50(3)(2021): 791-801

http://doi.org/10.17576/jsm-2021-5003-20

 

Honey Ameliorate Negative Effects in Neurodegenerative Diseases: An Evidence-Based Review

(Madu Memperbaiki Kesan Negatif dalam Penyakit Neurodegeneratif: Suatu Ulasan Berdasarkan Bukti)

 

ABID NORDIN1,2, AMINUDDIN BIN SAIM3 & RUSZYMAH BT HJ IDRUS1,2*

 

1Department of Physiology, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Federal Territory, Malaysia

 

2Centre for Tissue Engineering & Regenerative Medicine, Clinical Block, UKM Medical Centre, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Federal Territory, Malaysia

 

3Ear, Nose and Throat Consultant Clinic, Ampang Puteri Specialist Hospital, Taman Dato Ahmad Razali, 68000 Ampang, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 12 Julai 2020/Diterima: 25 Ogos 2020

 

ABSTRACT

Neurodegenerative diseases are cluster of disorders arising from neuronal cell death in the central nervous system. Its prevalence increases with increasing age. Therapeutic options for neurodegenerative disease include protection against oxidative damage, attenuation of neuroinflammation, maintenance of essential neurotransmitters, and protection against environmental factors that induce neurotoxicity. Honey with its antioxidative, anti-inflammatory, and cytoprotective effects is a potential candidate for therapy in neurodegenerative diseases. The present evidence-based review summarizes the effects of honey on neurodegenerative diseases in non-human subjects. Three electronic databases, namely PubMed, Ovid Medline and Scopus were searched for records published from inception of database to May 2020 to identify reports on the association of honey and neurodegenerative diseases. Based on the preset eligibility criteria, 8 qualified articles were selected and discussed in this review. Honey from different geological origin around the globe was used by different researcher among the studies included. Honey confers protection against oxidative stress induced by hypoxia and metabolic syndrome, aluminium toxicity, and neuroinflammation. Honey also demonstrated potential ability to inhibit neurotransmitters degrading enzymes and restore memory impairment. This review showed a sparse body of evidence on the potential of honey as neurodegenerative disease therapy.

 

Keywords: Antioxidant; honey; memory loss; neurodegenerative disease; regeneration

 

ABSTRAK

Penyakit neurodegeneratif adalah satu kumpulan penyakit yang muncul daripada kematian sel saraf di dalam sistem saraf pusat. Prevalens penyakit neurodegeneratif meningkat dengan peningkatan usia. Antara strategi rawatan penyakit ini adalah perlindungan daripada kerosakan oksidatif, pengawalan keradangan saraf, pemeliharaan neuropemancar penting dan perlindungan daripada faktor persekitaran yang boleh mengakibatkan ketoksikan saraf. Madu dengan kesan antioksida, anti-keradangan dan perlindungan sito merupakan calon yang berpotensi untuk perawatan penyakit neurodegeneratif dalam subjek bukan manusia. Tiga pengkalan data, PubMed, Ovid Medline dan Scopus digunakan untuk mengenal pasti rekod yang diterbitkan daripada permulaan pangkalan data sehingga Mei 2020 yang melaporkan kaitan madu dan penyakit neurodegeneratif. Berdasarkan kriteria yang ditetapkan, 8 artikel yang bersesuaian dipilih dan dibincangkan dalam kajian ini. Madu daripada punca geografi yang pelbagai di serata dunia telah digunakan oleh pengkaji yang berbeza disertakan dalam kajian ini. Madu menunjukkan perlindungan ke atas penyakit neurodegeneratif melalui perlindungan daripada tekanan oksida yang dihasilkan oleh kekurangan oksigen dan sindrom metabolik, perlindungan daripada ketoksikan aluminium dan perlindungan daripada keradangan saraf. Madu turut menunjukkan kebolehan untuk mencatutkan enzim penguraian neuropemancar dan memulihkan kehilangan memori. Kajian ini menunjukkan jurang pengetahuan dalam penggunaan madu untuk rawatan penyakit neurogeneratif.

 

Kata kunci: Antioksida; kehilangan memori; madu; penjanaan semula; penyakit neurodegeneratif

 

RUJUKAN

Ahmad, K., Baig, M.H., Mushtaq, G., Kamal, M.A., Greig, N.H. & Choi, I. 2017. Commonalities in biological pathways, genetics, and cellular mechanism between alzheimer disease and other neurodegenerative diseases: An in silico-updated overview. Current Alzheimer Research 14(11): 1190-1197.

Arshad, N.A., Lin, T.S. & Yahaya, M.F. 2020. Stingless bee honey reduces anxiety and improves memory of the metabolic disease-induced rats. CNS & Neurological Disorders Drug Targets 19(2): 115-126.

Baker, D.J. & Petersen, R.C. 2018. Cellular senescence in brain aging and neurodegenerative diseases: evidence and perspectives. Journal of Clinical Investigation 128(4): 1208-1216.

Baranowska-Wojcik, E., Szwajgier, D. & Winiarska-Mieczan, A. 2020. Honey as the potential natural source of cholinesterase inhibitors in Alzheimer's disease. Plant Foods for Human Nutrition 75(1): 30-32.

Berman, T. & Bayati, A. 2018. What are neurodegenerative diseases and how do they affect the brain? Frontiers for Young Minds 6(70). doi: 10.3389/frym.2018.00070.

Bondy, S.C. 2016. Low levels of aluminum can lead to behavioral and morphological changes associated with Alzheimer's disease and age-related neurodegeneration. Neurotoxicology 52: 222-229.

CAC. 2001. Alinorm 41/10: Revised Standard for Honey. Rome: Codex Alimentarius Commission (CAC).

Candiracci, M., Piatti, E., Dominguez-Barragan, M., Garcia-Antras, D., Morgado, B., Ruano, D., Gutiérrez, J.F., Parrado, J. & Castaño, A. 2012. Anti-inflammatory activity of a honey flavonoid extract on lipopolysaccharide-activated N13 microglial cells. Journal of Agricultural and Food Chemistry 60(50): 12304-12311.

Chen, J., Long, Y., Han, M., Wang, T., Chen, Q. & Wang, R. 2008. Water-soluble derivative of propolis mitigates scopolamine-induced learning and memory impairment in mice. Pharmacology Biochemistry and Behavior 90(3): 441-446.

Chen, Z., Tian, R., She, Z., Cai, J. & Li, H. 2020. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease. Free Radical Biology and Medicine 52(1): 116-141.

Cheung, Y., Meenu, M., Yu, X. & Xu, B. 2019. Phenolic acids and flavonoids profiles of commercial honey from different floral sources and geographic sources. International Journal of Food Properties 22(1): 290-308.

Chin-Chan, M., Navarro-Yepes, J. & Quintanilla-Vega, B. 2015. Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases. Frontiers in Cellular Neuroscience 9: 124.

Chua, L.S., Rahaman, N.L.A., Adnan, N.A. & Eddie Tan, T.T. 2013. Antioxidant activity of three honey samples in relation with their biochemical components. Journal of Analytical Methods in Chemistry 2013: 313798.

Cianciosi, D., Forbes-Hernandez, T.Y., Afrin, S., Gasparrini, M., Reboredo-Rodriguez, P., Manna, P.P., Zhang, J., Bravo Lamas, L., Martínez Flórez, S., Agudo Toyos, P. & Quiles, J.L. 2018. Phenolic compounds in honey and their associated health benefits: A review. Molecules 23(9): 2322.

Di Paolo, C., Reverte, I., Colomina, M.T., Domingo, J.L. & Gomez, M. 2014. Chronic exposure to aluminum and melatonin through the diet: Neurobehavioral effects in a transgenic mouse model of Alzheimer disease. Food and Chemical Toxicology 69: 320-329.

Ferreira, R.S., Dos Santos, N.A.G., Martins, N.M., Fernandes, L.S. & Dos Santos, A.C. 2018. Caffeic acid phenethyl ester (CAPE) protects PC12 cells from cisplatin-induced neurotoxicity by activating the NGF-signaling pathway. Neurotoxicity Research 34(1): 32-46.

Fontanilla, C.V., Ma, Z., Wei, X., Klotsche, J., Zhao, L., Wisniowski, P., Dodel, R.C., Farlow, M.R., Oertel, W.H. & Du, Y. 2011. Caffeic acid phenethyl ester prevents 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurodegeneration. Neuroscience 188: 135-141.

Goes, A.T.R., Jesse, C.R., Antunes, M.S., Ladd, F.V.L., Ladd, A.A.B.L., Luchese, C., Paroul N., & Boeira, S.P. 2018. Protective role of chrysin on 6-hydroxydopamine-induced neurodegeneration a mouse model of Parkinson's disease: Involvement of neuroinflammation and neurotrophins. Chemico-Biological Interactions 279: 111-120.

Groves-Kirkby, C.J., Denman, A.R., Campbell, J., Crockett, R.G., Phillips, P.S. & Rogers, S. 2016. Is environmental radon gas associated with the incidence of neurodegenerative conditions? A retrospective study of multiple sclerosis in radon affected areas in England and Wales. Journal of Environmental Radioactivity 154: 1-14.

Ha, S.K., Moon, E. & Kim, S.Y. 2010. Chrysin suppresses LPS-stimulated proinflammatory responses by blocking NF-κB and JNK activations in microglia cells. Neuroscience Letter 485(3): 143-147.

Haines, J.L. 2018. Alzheimer disease: Perspectives from epidemiology and genetics. The Journal of Law, Medicine & Ethics 46(3): 694-698.

Hemonnot, A.L., Hua, J., Ulmann, L. & Hirbec, H.E. 2019. Microglia in Alzheimer disease: Well-known targets and new opportunities. Frontiers in Aging Neuroscience 11: 233.

Hu, S., Hu, M., Liu, J., Zhang, B., Zhang, Z., Zhou, F.H., Wang, L. & Dong, J. 2020. Phosphorylation of Tau and alpha-Synuclein induced neurodegeneration in MPTP mouse model of Parkinson's disease. Neuropsychiatric Disease and Treatment 16: 651-663.

Hussein, U.K., Hassan, N.E.H.Y., Elhalwagy, M.E., Zaki, A.R., Abubakr, H.O., Nagulapalli Venkata, K.C., Jang, K.Y. & Bishayee, A. 2017. Ginger and propolis exert neuroprotective effects against monosodium glutamate-induced neurotoxicity in rats. Molecules 22(11): 1928.

Jin, X., Liu, Q., Jia, L., Li, M. & Wang, X. 2015. Pinocembrin attenuates 6-OHDA-induced neuronal cell death through Nrf2/ARE pathway in SH-SY5Y cells. Cellular and Molecular Neurobiology 35(3): 323-333.

Kritsilis, M., Rizou, S.V., Koutsoudaki, P.N., Evangelou, K., Gorgoulis, V.G. & Papadopoulos, D. 2018. Ageing, cellular senescence and neurodegenerative disease. International Journal of Molecular Sciences 19(10): 2937.

Kumar, A., Gill, J.P.S., Bedi, J.S., Manav, M., Ansari, J. & Walia, G.S. 2018. Sensorial and physicochemical analysis of Indian honeys for assessment of quality and floral origins. Food Research International 108: 571-583.

Kurauchi, Y., Hisatsune, A., Isohama, Y., Mishima, S. & Katsuki, H. 2012. Caffeic acid phenethyl ester protects nigral dopaminergic neurons via dual mechanisms involving haem oxygenase-1 and brain-derived neurotrophic factor. British Journal of Pharmacology 166(3): 1151-1168.

Lee, A. & Gilbert, R.M. 2016. Epidemiology of Parkinson disease. Neurologic Clinics 34(4): 955-965.

Lee, B.K., Lee, W.J. & Jung, Y.S. 2017. Chrysin attenuates VCAM-1 expression and monocyte adhesion in lipopolysaccharide-stimulated brain endothelial cells by preventing NF-κB signaling. International Journal of Molecular Sciences 18(7): 1424.

Liu, R., Wu, C.X., Zhou, D., Yang, F., Tian, S., Zhang, L., Zhang, T.T. & Du, G.H. 2012. Pinocembrin protects against β-amyloid-induced toxicity in neurons through inhibiting receptor for advanced glycation end products (RAGE)-independent signaling pathways and regulating mitochondrion-mediated apoptosis. BMC Medicine 10(1): 105.

Maher, B.A. 2019. Airborne magnetite- and iron-rich pollution nanoparticles: Potential neurotoxicants and environmental risk factors for neurodegenerative disease, including Alzheimer's disease. Journal of Alzheimer’s Disease 71(2): 361-375.

Malek-Ahmadi, M., Chen, K., Perez, S.E. & Mufson, E.J. 2019. Cerebral amyloid angiopathy and neuritic plaque pathology correlate with cognitive decline in elderly non-demented individuals. Journal of Alzheimer’s Disease 67(1): 411-422.

Marlatt, M.W., Bauer, J., Aronica, E., van Haastert, E.S., Hoozemans, J.J., Joels, M. & Lucassen, P.J. 2014. Proliferation in the Alzheimer hippocampus is due to microglia, not astroglia, and occurs at sites of amyloid deposition. Neural Plasticity 2014: 693851.

Martinez-Cue, C. & Rueda, N. 2020. Cellular senescence in neurodegenerative diseases. Frontiers in Cellular Neuroscience 14: 16.

Minden-Birkenmaier, B.A., Cherukuri, K., Smith, R.A., Radic, M.Z. & Bowlin, G.L. 2019. Manuka honey modulates the inflammatory behavior of a dHL-60 neutrophil model under the cytotoxic limit. International Journal of Biomaterials 2019: 6132581.

Moreira, F.T.C., Sale, M.G.F. & Di Lorenzo, M. 2017. Towards timely Alzheimer diagnosis: A self-powered amperometric biosensor for the neurotransmitter acetylcholine. Biosensors and Bioelectronics 87: 607-614.

Mullard, A. 2018. Microglia-targeted candidates push the Alzheimer drug envelope. Nature Reviews Drug Discovery 17: 303-305.

Nanaware, S., Shelar, M., Sinnathambi, A., Mahadik, K.R. & Lohidasan, S. 2017. Neuroprotective effect of Indian propolis in beta-amyloid induced memory deficit: Impact on behavioral and biochemical parameters in rats. Biomedicine & Pharmacotherapy 93: 543-553.

Ni, J., Wu, Z., Meng, J., Zhu, A., Zhong, X., Wu, S. & Nakanishi, H. 2017. The neuroprotective effects of Brazilian green propolis on neurodegenerative damage in human neuronal SH-SY5Y cells. Oxidative Medicine and Cellular Longevity 2017: 7984327.

Noelker, C., Bacher, M., Gocke, P., Wei, X., Klockgether, T., Du, Y. & Dodel, R. 2005. The flavanoide caffeic acid phenethyl ester blocks 6-hydroxydopamine-induced neurotoxicity. Neuroscience Letter 383(1-2): 39-43.

Nogueira, F.N., Romero, A.C., Pedrosa, M.D.S., Ibuki, F.K. & Bergamaschi, C.T. 2020. Oxidative stress and the antioxidant system in salivary glands of rats with experimental chronic kidney disease. Archives of Oral Biology 113: 104709.

Nordin, A., Omar, N., Sainik, N.Q.A.V., Chowdhury, S.R., Omar, E., Bin Saim, A. & Idrus, R.B.H. 2018. Low dose stingless bee honey increases viability of human dermal fibroblasts that could potentially promote wound healing. Wound Medicine 23: 22-27.

Rosengarten, B., Paulsen, S., Molnar, S., Kaschel, R., Gallhofer, B. & Kaps, M. 2006. Acetylcholine esterase inhibitor donepezil improves dynamic cerebrovascular regulation in Alzheimer patients. Journal of Neurology 253(1): 58-64.

Rubenstein, E., Hartley, S. & Bishop, L. 2019. Epidemiology of dementia and Alzheimer disease in individuals with down syndrome. JAMA Neurology 77(2): 262-264.

Sakakibara, Y., Sekiya, M., Saito, T., Saido, T.C. & Iijima, K.M. 2019. Amyloid-beta plaque formation and reactive gliosis are required for induction of cognitive deficits in App knock-in mouse models of Alzheimer's disease. BMC Neuroscience 20(1): 13.

Saxena, A.K., Phyu, H.P., Al-Ani, I.M. & Talib, N.A. 2014. Potential protective effect of honey against chronic cerebral hypoperfusion-induced neurodegeneration in rats. Journal of the Anatomical Society of India 63(2): 151-155.

Schedin-Weiss, S., Inoue, M., Hromadkova, L., Teranishi, Y., Yamamoto, N.G., Wiehager, B., Bogdanovic, N., Winblad, B., Sandebring-Matton, A., Frykman, S. & O. Tjernberg, L. 2017. Monoamine oxidase b is elevated in Alzheimer disease neurons, is associated with gamma-secretase and regulates neuronal amyloid beta-peptide levels. Alzheimer’s Research & Therapy 9(1): 1-19.

Schöttker, B., Brenner, H., Jansen, E.H., Gardiner, J., Peasey, A., Kubínová, R., Pająk, A., Topor-Madry, R., Tamosiunas, A., Saum, K.U. & Holleczek, B. 2015. Evidence for the free radical/oxidative stress theory of ageing from the CHANCES consortium: A meta-analysis of individual participant data. BMC Medicine 13(1): 300.

Shati, A.A., Elsaid, F.G. & Hafez, E.E. 2011. Biochemical and molecular aspects of aluminium chloride-induced neurotoxicity in mice and the protective role of Crocus sativus L. extraction and honey syrup. Neuroscience 175: 66-74.

Shokr, H., Dias, I.H.K. & Gherghel, D. 2020. Microvascular function and oxidative stress in adult individuals with early onset of cardiovascular disease. Scientific Reports 10(1): 1-8.

Sierksma, A., Lu, A., Mancuso, R., Fattorelli, N., Thrupp, N., Salta, E., Zoco, J., Blum, D., Buée, L., De Strooper, B. & Fiers, M. 2020. Novel Alzheimer risk genes determine the microglia response to amyloid-beta but not to TAU pathology. EMBO Molecular Medicine 12(3): e10606.

Silva, R.B., Santos, N.A.G., Martins, N.M., Ferreira, D.A.S., Barbosa Jr., F., Oliveira Souza, V.C., Kinoshita, A., Baffa, O., Del-Bel, E. & Santos, A.C. 2013. Caffeic acid phenethyl ester protects against the dopaminergic neuronal loss induced by 6-hydroxydopamine in rats. Neuroscience 233: 86-94.

Simon, D.K., Tanner, C.M. & Brundin, P. 2020. Parkinson disease epidemiology, pathology, genetics, and pathophysiology. Clinics in Geriatric Medicine 36(1): 1-12.

Solayman, M., Islam, M.A., Paul, S., Ali, Y., Khalil, M.I., Alam, N. & Gan, S.H. 2016. Physicochemical properties, minerals, trace elements, and heavy metals in honey of different origins: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety 15(1): 219-233.

Speakman, J.R. & Selman, C. 2011. The free-radical damage theory: Accumulating evidence against a simple link of oxidative stress to ageing and lifespan. Bioessays 33(4): 255-259.

Spencer, P.S., Palmer, V.S. & Kisby, G.E. 2016. Seeking environmental causes of neurodegenerative disease and envisioning primary prevention. Neurotoxicology 56: 269-283.