Sains Malaysiana 51(11)(2022): 3567-3578

http://doi.org/10.17576/jsm-2022-5111-05

 

Strategi Pengoptimuman Lanjutan untuk Meningkatkan Penghasilan Biohidrogen Foto-fermentasi oleh Bakteria Ungu Bukan Sulfur

(Advanced Optimization Strategies to Enhance Photo-fermentative Biohydrogen Production by Non-Sulfur Purple Bacteria)

 

MING FOONG TIANG1, ARINA ATIQAH AZHAR1, MUHAMMAD ALIF FITRI HANIPA1, PEER MOHAMED ABDUL1,2,*, MOHD SHAIFUL SAJAB1,2, DARMAN NORDIN1, SAFA SENAN MAHMOD1, ABDULLAH AMRU INDERA LUTHFI1 & JAMALIAH MD. JAHIM1,2

 

1Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

2Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 29 September 2021/ Accepted: 16 June 2022

 

Abstrak

Proses foto-fermentasi ialah suatu laluan penghasilan hidrogen yang menarik. Walau bagaimanapun, didapati bahawa kecekapan penukaran cahaya dan penghasilan biohidrogen foto-fermentasi oleh bakteria ungu bukan sulfur (PNSB) adalah sangat rendah. Maka, pelbagai pendekatan pengoptimuman telah dikaji bagi meningkatkan penghasilan foto-hidrogen dan prestasi keseluruhannya. Ulasan ini membincangkan strategi pengoptimuman lanjutan untuk meningkatkan penghasilan biohidrogen foto-fermentasi secara menyeluruh. Antara strategi yang dibincangkan merangkumi pengoptimuman makronutrien dalam media penghasilan biohidrogen, faktor abiotik dan rejim pencahayaan semasa proses foto-fermentasi berlaku. Pendekatan ini menunjukkan keputusan positif dalam meningkatkan penghasilan foto-hidrogen oleh PNSB. Pendekatan gabungan yang mengintegrasikan strategi pengoptimuman individu yang berbeza dipercayai mungkin dapat mendatangkan peningkatan yang sinergistik terhadap produktiviti dan hasil biohidrogen foto-fermentasi oleh PNSB.

 

Kata kunci: Bakteria ungu bukan sulphur; faktor abiotik; foto-fermentasi; media penghasilan biohidrogen; rejim pencahayaan

 

Abstract

Photo-fermentation seems to be an attractive hydrogen production route. However, the light conversion efficiency and photo-fermentative biohydrogen production of purple non-sulphur bacteria (PNSB) are suboptimally low, and hence, various optimisation approaches are investigated to improve overall performance and photo-hydrogen production. This review presents an overview of the optimisation strategies applied to enhance the photo-fermentative biohydrogen production. Among the strategies discussed include the optimisation of the macronutrient in biohydrogen production medium, abiotic factors and the lighting regime during photo-fermentation. These approaches show positive results in the enhancement of photo-hydrogen production by PNSB. It is believed that the combined approach of integrating individual strategies will be able to bring synergistic improvement on the productivity and biohydrogen yield of photo-fermentation by PNSB.

 

Keywords: Abiotic factors; biohydrogen production medium; lighting regime; photo-fermentation; purple non-sulphur bacteria

 

REFERENCES

Abdul, P.M., Md. Jahim, J., Harun, S., Markom, M., Hassan, O., Mohammad, A.W. & Asis, A.J. 2013. Biohydrogen production from pentose-rich oil palm empty fruit bunch molasses: A first trial. International Journal of Hydrogen Energy 38(35): 15693-15699.

Adessi, A. & De Philippis, R. 2014. Photobioreactor design and illumination systems for H2 production with anoxygenic photosynthetic bacteria: A review. International Journal of Hydrogen Energy 39(7): 3127-3141.

Akroum-Amrouche, D., Abdi, N., Lounici, H. & Mameri, N. 2013. Biohydrogen production by dark and photo-fermentation processes. Proceedings of 2013 International Renewable and Sustainable Energy Conference. pp. 499-503.

Akroum-Amrouche, D., Abdi, N., Lounici, H. & Mameri, N. 2011. Effect of physico-chemical parameters on biohydrogen production and growth characteristics by batch culture of Rhodobacter sphaeroides CIP 60.6. Applied Energy 88(6): 2130-2135.

Androga, D.D., Sevinç, P., Koku, H., Yücel, M., Gündüz, U., Eroǧlu, I. & Eroglu, I. 2014. Optimization of temperature and light intensity for improved photofermentative hydrogen production using Rhodobacter capsulatus DSM 1710. International Journal of Hydrogen Energy 39(6): 2472-2480.

Anwar, M., Lou, S., Chen, L., Li, H. & Hu, Z. 2019. Recent advancement and strategy on bio-hydrogen production from photosynthetic microalgae. Bioresource Technology 292: 121972.

Argun, H. & Kargi, F. 2010a. Effects of light source, intensity and lighting regime on bio-hydrogen production from ground wheat starch by combined dark and photo-fermentations. International Journal of Hydrogen Energy 35(4): 1604-1612.

Argun, H. & Kargi, F. 2010b. Photo-fermentative hydrogen gas production from dark fermentation effluent of ground wheat solution: Effects of light source and light intensity. International Journal of Hydrogen Energy 35(4): 1595-1603.

Arimi, M.M., Knodel, J., Kiprop, A., Namango, S.S., Zhang, Y. & Geißen, S.U. 2015. Strategies for improvement of biohydrogen production from organic-rich wastewater: A review. Biomass and Bioenergy 75: 101-118.

Arisht, S.N., Abdul, P.M., Liu, C.M., Lin, S.K., Maaroff, R.M., Wu, S.Y. & Jahim, J.M. 2019. Biotoxicity assessment and lignocellulosic structural changes of phosphoric acid pre-treated young coconut husk hydrolysate for biohydrogen production. International Journal of Hydrogen Energy 44(12): 5830-5843.

Assawamongkholsiri, T. & Reungsang, A. 2015. Photo-fermentational hydrogen production of Rhodobacter sp. KKU-PS1 isolated from an UASB reactor. Electronic Journal of Biotechnology 18(3): 221-230.

Assawamongkholsiri, T., Reungsang, A., Plangkang, P. & Sittijunda, S. 2018. Repeated batch fermentation for photo-hydrogen and lipid production from wastewater of a sugar manufacturing plant. International Journal of Hydrogen Energy 43(7): 3605-3617.

Assawamongkholsiri, T., Plangklang, P. & Reungsang, A. 2016. Photofermentaion and lipid accumulation by Rhodobacter sp. KKU-PS1 using malic acid as a substrate. International Journal of Hydrogen Energy 41(15): 6259-6270.

Azizi, M.A.H., Wan Isahak, W.N.R., Dzakaria, N. & Yarmo, M.A. 2019. Hydrogen production from catalytic formic acid ecomposition over Zn based catalysts under room temperature. Jurnal Kejuruteraan 31(1): 155-160.

Basak, N. & Das, D. 2009. Photofermentative hydrogen production using purple non-sulfur bacteria Rhodobacter sphaeroides O.U.001 in an annular photobioreactor: A case study. Biomass and Bioenergy 33(6): 911-919.

Basak, N., Jana, A.K., Das, D. & Saikia, D. 2014. Photofermentative molecular biohydrogen production by purple-non-sulfur (PNS) bacteria in various modes: The present progress and future perspective. International Journal of Hydrogen Energy 39(13): 6853-6871.

Camuffo, D. 2019. Radiometric aspects of solar radiation, blackbody, and lamp radiation. Dlm. Microclimate for Cultural Heritage: Measurement, Risk Assessment, Conservation, Restoration, and Maintenance of Indoor and Outdoor Monuments. 3rd ed. hlm. 237-272.

Chen, C.Y., Saratale, G.D., Lee, C.M., Chen, P.C. & Chang, J.S. 2008. Phototrophic hydrogen production in photobioreactors coupled with solar-energy-excited optical fibers. International Journal of Hydrogen Energy 33(23): 6886-6895.

Chen, X., Lv, Y., Liu, Y., Ren, R. & Zhao, J. 2017. The hydrogen production characteristics of mixed photoheterotrophic culture. International Journal of Hydrogen Energy 42(8): 4840-4847.

de Souza, D.F., da Silva, P.P.F., Fontenele, L.F.A., Barbosa, G.D. & de Oliveira Jesus, M. 2019. Efficiency, quality, and environmental impacts: A comparative study of residential artificial lighting. Energy Reports 5: 409-424.

Eroğlu, İ., Aslan, K., Gündüz, U., Yücel, M. & Türker, L. 1999. Substrate consumption rates for hydrogen production by Rhodobacter sphaeroidesin a column photobioreactor. Progress in Industrial Microbiology 35(C): 103-113.

Ghosh, D., Sobro, I.F. & Hallenbeck, P.C. 2012. Optimization of the hydrogen yield from single-stage photofermentation of glucose by Rhodobacter capsulatus JP91 using response surface methodology. Bioresource Technology 123: 199-206.

Hallenbeck, P.C. & Liu, Y. 2016. Recent advances in hydrogen production by photosynthetic bacteria. International Journal of Hydrogen Energy 41(7): 4446-4454.

Han, H., Jia, Q., Liu, B., Yang, H. & Shen, J. 2013. Fermentative hydrogen production from acetate using Rhodobacter sphaeroides RV. International Journal of Hydrogen Energy 38(25): 10773-10778.

Hanipa, M.A.F., Abdul, P.M., Jahim, J.M., Takriff, M.S., Reungsang, A. & Wu, S.Y. 2020. Biotechnological approach to generate green biohydrogen through the utilization of succinate-rich fermentation wastewater. International Journal of Hydrogen Energy 45(42): 22246-22259.

Hay, J.X.W., Wu, T.Y., Juan, J.C. & Jahim, J.M. 2013. Biohydrogen production through photo fermentation or dark fermentation using waste as a substrate: Overview, economics, and future prospects of hydrogen usage. Biofuels, Bioproducts and Biorefining 7(3): 334-352.

Hillmer, P. & Gest, H. 1977. H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: H2 production by growing cultures. Journal of Bacteriology 129(2): 724-731.

Hu, C., Choy, S.Y. & Giannis, A. 2018. Evaluation of lighting systems, carbon sources, and bacteria cultures on photofermentative hydrogen production. Applied Biochemistry and Biotechnology 185(1): 257-269.

Hu, J., Jing, Y., Zhang, Q., Guo, J. & Lee, D.J. 2017. Mesophilic and thermophilic photo-hydrogen production from micro-grinded, enzyme-hydrolyzed maize straws. International Journal of Hydrogen Energy 42(45): 27618-27622.

Jafary, T., Wan Daud, W.R., Ghasemi, M., Abu Bakar, M.H., Sedighi, M., Kim, B.H., Carmona-Martínez, A.A., Jahim, J.M. & Ismail, M. 2019. Clean hydrogen production in a full biological microbial electrolysis cell. International Journal of Hydrogen Energy 44(58): 30524-30531.

Jalil, N.K.A., Asli, U.A., Khamis, A.K., Hashim, H., Kamaruddin, J., Hassim, M.H. & Choopavang, S.B. 2019. Kinetic analysis of biohydrogen formation using immobilized hydrogen-producing bacteria on activated carbon sponge from pineapple residues. Jurnal Kejuruteraan SI 2(1): 131-135.

Jiang, D., Fang, Z., Chin, S.X., Tian, X.F. & Su, T.C. 2016. Biohydrogen production from hydrolysates of selected tropical biomass wastes with Clostridium butyricum. Scientific Reports 6(May): 1-11.

Jiang, D., Ge, X., Zhang, T., Liu, H. & Zhang, Q. 2016. Photo-fermentative hydrogen production from enzymatic hydrolysate of corn stalk pith with a photosynthetic consortium. International Journal of Hydrogen Energy 41(38): 16778-16785.

Kapdan, I.K., Kargi, F., Oztekin, R. & Argun, H. 2009. Bio-hydrogen production from acid hydrolyzed wheat starch by photo-fermentation using different Rhodobacter sp. International Journal of Hydrogen Energy 34(5): 2201-2207.

Koku, H., Eroǧlu, I., Gündüz, U., Yücel, M., Türker, L., Eroğlu, İ., Gündüz, U., Yücel, M., & Türker, L. 2002. Aspects of the metabolism of hydrogen production by Rhodobacter sphaeroides. International Journal of Hydrogen Energy 27(11-12): 1315-1329.

Kumar, G., Mudhoo, A., Sivagurunathan, P., Nagarajan, D., Ghimire, A., Lay, C.H., Lin, C.Y., Lee, D.J. & Chang, J.S. 2016. Recent insights into the cell immobilization technology applied for dark fermentative hydrogen production. Bioresource Technology 219: 725-737.

Laocharoen, S. & Reungsang, A. 2014. Isolation, characterization and optimization of photo-hydrogen production conditions by newly isolated Rhodobacter sphaeroides KKU-PS5. International Journal of Hydrogen Energy 39(21): 10870-10882.

Laurinavichene, T., Tekucheva, D., Laurinavichius, K. & Tsygankov, A. 2018. Utilization of distillery wastewater for hydrogen production in one-stage and two-stage processes involving photofermentation. Enzyme and Microbial Technology 110: 1-7.

Li, X., Wang, Y., Zhang, S., Chu, J., Zhang, M., Huang, M. & Zhuang, Y. 2011. Effects of light/dark cycle, mixing pattern and partial pressure of H2 on biohydrogen production by Rhodobacter sphaeroides ZX-5. Bioresource Technology 102(2): 1142-1148.

Liu, B., Jin, Y.R., Cui, Q.F., Xie, G.J., Wu, Y.N. & Ren, N.Q. 2015. Photo-fermentation hydrogen production by Rhodopseudomonas sp. nov. strain A7 isolated from the sludge in a bioreactor. International Journal of Hydrogen Energy 40(28): 8661-8668.

Łukajtis, R., Hołowacz, I., Kucharska, K., Glinka, M., Rybarczyk, P., Przyjazny, A. & Kamiński, M. 2018. Hydrogen production from biomass using dark fermentation. Renewable and Sustainable Energy Reviews 91: 665-694.

Maaroff, R.M., Jahim, J.M., Azahar, A.M., Abdul, P.M., Masdar, M.S., Nordin, D. & Abd Nasir, M.A. 2019. Biohydrogen production from palm oil mill effluent (POME) by two stage anaerobic sequencing batch reactor (ASBR) system for better utilization of carbon sources in POME. International Journal of Hydrogen Energy 44(6): 3395-3406.

Magnin, J.P. & Deseure, J. 2019. Hydrogen generation in a pressurized photobioreactor: Unexpected enhancement of biohydrogen production by the phototrophic bacterium Rhodobacter capsulatus. Applied Energy 239(October 2018): 635-643.

Mahmod, S.S., Jahim, J.M. & Abdul, P.M. 2017. Pretreatment conditions of palm oil mill effluent (POME) for thermophilic biohydrogen production by mixed culture. International Journal of Hydrogen Energy 42(45): 27512-27522.

Mishra, P., Singh, L., Ab Wahid, Z., Krishnan, S., Rana, S., Amirul Islam, M. & Sakinah, M. 2018. Photohydrogen production from dark-fermented palm oil mill effluent (DPOME) and statistical optimization: Renewable substrate for hydrogen. Journal of Cleaner Production 199: 11-17.

Nath, K. & Das, D. 2009. Effect of light intensity and initial pH during hydrogen production by an integrated dark and photofermentation process. International Journal of Hydrogen Energy 34(17): 7497-7501.

Pandey, A., Srivastava, S., Rai, P. & Duke, M. 2019. Cheese whey to biohydrogen and useful organic acids: A non-pathogenic microbial treatment by L. acidophilus. Scientific Reports 9(1): 1-9.

Pandey, A., Srivastava, N. & Sinha, P. 2012. Optimization of hydrogen production by Rhodobacter sphaeroides NMBL-01. Biomass and Bioenergy 37: 251-256.

Reungsang, A., Zhong, N., Yang, Y., Sittijunda, S., Xia, A. & Liao, Q. 2018. 7 - Hydrogen from photo fermentation. Green Energy and Technology. Singapore: Springer. hlm. 221-317.

Sivagurunathan, P., Kumar, G., Bakonyi, P., Kim, S.H., Kobayashi, T., Xu, K.Q., Lakner, G., Tóth, G., Nemestóthy, N. & Bélafi-Bakó, K. 2016. A critical review on issues and overcoming strategies for the enhancement of dark fermentative hydrogen production in continuous systems. International Journal of Hydrogen Energy 41(6): 3820-3836.

Subudhi, S., Mogal, S.K., Kumar, N.R., Nayak, T., Lal, B., Velankar, H.R., Kumar, T.R.,  Rao, P.V.C., Choudary, N.V., Shah, G. & Gandham, S. 2016. Photo fermentative hydrogen production by a new strain; Rhodobacter sphaeroides CNT 2A, isolated from pond sediment. International Journal of Hydrogen Energy 41(32): 13979-13985.

Sun, M., Lv, Y. & Liu, Y. 2015. A new hydrogen-producing strain and its characterization of hydrogen production. Applied Biochemistry and Biotechnology 177(8): 1676-1689.

Tao, Y., He, Y., Wu, Y., Liu, F., Li, X., Zong, W. & Zhou, Z. 2008. Characteristics of a new photosynthetic bacterial strain for hydrogen production and its application in wastewater treatment. International Journal of Hydrogen Energy 33(3): 963-973.

Tarabas, О.V., Hnatush, S.О. & Мoroz, О.М. 2019. The usage of nitrogen compounds by purple non-sulfur bacteria of the Rhodopseudomonas genus. Regulatory Mechanisms in Biosystems 10(1): 83-86.

Turon, V., Anxionnaz-Minvielle, Z. & Willison, J.C. 2018. Replacing incandescent lamps with an LED panel for hydrogen production by photofermentation: Visible and NIR wavelength requirements. International Journal of Hydrogen Energy 43(16): 7784-7794.

Uyar, B., Kars, G., Yücel, M., Gündüz, U. & Eroǧlu, I. 2012. Hydrogen production via photofermentation. Dlm. State of the Art and Progress in Production of Biohydrogen. Bentham Science. hlm. 54-77.

Uyar, B., Eroglu, I., Yücel, M., Gündüz, U. & Türker, L. 2007. Effect of light intensity, wavelength and illumination protocol on hydrogen production in photobioreactors. International Journal of Hydrogen Energy 32(18): 4670-4677.

Wang, Y., Tahir, N., Cao, W., Zhang, Q. & Lee, D.J. 2019. Grid columnar flat panel photobioreactor with immobilized photosynthetic bacteria for continuous photofermentative hydrogen production. Bioresource Technology 291: 121806.

Zhang, Q. & Zhang, Z. 2018. Chapter Four - Biological hydrogen production from renewable resources by photofermentation. Dlm. Advances in Bioenergy, 1st ed., Elsevier Inc. 3: 137-160.

Zhou, Q., Zhang, P. & Zhang, G. 2015. Biomass and pigments production in photosynthetic bacteria wastewater treatment: Effects of light sources. Bioresource Technology 179: 505-509.

Zhu, Z., Shi, J., Zhou, Z., Hu, F. & Bao, J. 2010. Photo-fermentation of Rhodobacter sphaeroides for hydrogen production using lignocellulose-derived organic acids. Process Biochemistry 45(12): 1894-1898.

 

*Corresponding author; email: peer@ukm.edu.my

 

 

 

previous